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1 Evolution of Computers
1.1 Bench-marking Performance

Definition 1.1 (Clock Speed). The pulse frequency (f) by the clock, measured in cycles per second, or Hertz (Hz).
Also known as clock rate, clock speed. A cycle is technically a synchronised pulse.

Programs consist of instructions, and each instruction has several cycles. For example, a classic RISC1 pipeline may
have these 5 stages:

• Fetch (IF)
• Decode (ID)
• Execution/Effective Address (EX)
• Memory Access (MEM)
• Writeback (WB)

Definition 1.2 (Average Cycles Per Instruction (CPI)).

Average CPI =
∑

i CPIi × Ii

Ic

where Ii is the number of instructions of type i, and Ic =
∑

i Ii.

Definition 1.3 (Processor Time (T )).
T = Ic × CPI

f

Definition 1.4 (Million Instructions Per Second (MIPS)).

MIPS = f

CPI× 106

Other useful metrics: Million Floating Point Operations Per Second (MFLOPS).

Remark. MIPS and MFLOPS may not accurately reflect the performance of a computer. A better approach is to
measure the time required to do some real jobs. Standard Performance Evaluation Corporation (SPEC) benchmarks
are used for this.

1RISC: Reduced Instruction Set Computing
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2 Digital Logic
2.1 Boolean Algebra

First proposed by George Boole in 1854. Variables in boolean algebra are always either 0 or 1.

Definition 2.1 (Boolean Function). A function in boolean algebra that takes k variables is defined as:
f : {0, 1}k → {0, 1}

Definition 2.2 (Boolean Operations). In boolean algebra, the basic operations are denoted as follows:
• AND: A ·B (or simply AB), gives 1 iff A = B = 1;
• OR: A + B, gives 1 if A = 1 or B = 1;
• NOT: A, inverts the value of A;
• NAND: A ·B, the complement of AND;
• NOR: A + B, the complement of OR;
• XOR: A⊕B, gives 1 iff one and only one of A and B is 1.

Remark. A⊕B = AB + AB;
A⊕B = AB + AB = (AB)(AB) = (A + B)(A + B) = AA + AB + AB + BB = AB + AB

The truth tables of AND, OR, XOR, and NOT are given by:

A B A ·B A + B A⊕B A
0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 1 0 0

Definition 2.3 (Boolean Algebra Laws). The important laws of boolean algebra are:
• Commutative Law: A + B = B + A, A ·B = B ·A;
• Identity Elements: A + 0 = A, A · 1 = A;
• Null Law: A + 1 = 1, A · 0 = 0;
• Idempotent Law: A + A = A, A ·A = A;
• Inverse Law: A + A = 1, A ·A = 0;
• Associative Law: (A + B) + C = A + (B + C), (A ·B) · C = A · (B · C);
• Distributive Law: A · (B + C) = A ·B + A · C, A + (B · C) = (A + B) · (A + C);

Proof of Distributive Law A + (B · C) = (A + B) · (A + C).
A + (B · C) = A ·A + A · C + B ·A + B · C

Suppose A = 1, then the equation becomes:
1 + (B · C) = 1 · 1 + 1 · C + B · 1 + B · C

1 = 1 + C + B + B · C
1 = 1 + B · C

which is true by the Null Law. Now, suppose A = 0, then the equation becomes:
0 + (B · C) = 0 · 0 + 0 · C + B · 0 + B · C

B · C = 0 + 0 + 0 + B · C
B · C = B · C

which is true by the Idempotent Law.

Theorem 2.4 (De Morgan’s Theorem). De Morgan’s Theorem states that:
A + B = A ·B
A ·B = A + B
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More generally, we have:
A + B + · · ·+ N = A ·B · · · · ·N

AB . . . N = A + B + · · ·+ N

2.1.1 Logic Gates

Other than expressions, boolean algebra can also be implemented using logic gates. Below is a list of the corresponding
gates for the basic boolean operations:

(a) AND Gate (b) OR Gate (c) NOT Gate

(d) NAND Gate (e) NOR Gate (f) XOR Gate

Figure 1: Logic Gates Symbols

2.2 Functional Completeness

Definition 2.5 (Functional Completeness). A set of logic gates is said to be functionally complete if any boolean
function can be implemented using only gates from that set.

2.2.1 The AND, OR, NOT Set

The set of AND, OR, and NOT gates is functionally complete, i.e. they can be used to create any arbitrary boolean
function.

2.2.2 The AND, NOT Set

By using De Morgan’s Theorem, the OR operation can be implemented using only AND and NOT gates. Therefore,
this reduced set is itself functionally complete. We start with the NAND expression in De Morgan’s Theorem:

A + B = A ·B

Then, we apply the NOT operation to both sides:

A + B = A ·B

A + B = A ·B
The left hand side is exactly the OR operation, implemented using only AND and NOT gates.

2.2.3 The OR, NOT Set

Similarly, by using De Morgan’s Theorem, the AND operation can be implemented using only OR and NOT gates.
Therefore, this reduced set is itself functionally complete.

2.2.4 The NAND Set

The NAND operation alone can also be used to implement the AND, OR, and NOT operations. By applying NAND
between A and A itself, we have:

A ·A = A (NOT operation)
Similarly, by applying NAND over the value of A ·B, we have A ·B, which is the AND operation.

Finally, by applying NAND between A and B (i.e. A ·B), according to De Morgan’s Theorem, we have A + B, which
is the OR operation.

Since AND, OR, and NOT operations can be implemented using only NAND gates, and the set of AND, OR, and
NOT gates is functionally complete, the NAND set is also functionally complete.

2.2.5 The NOR Set

Similar to the NAND set, the NOR set is also functionally complete.
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2.3 Implementation of Boolean Functions
Suppose we would like to implement a boolean function F (A, B, C) with the following truth table:

A B C F (A, B, C)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

The technique is to use either the Sum-of-Products (SOP) or the Product-of-Sums (POS) method.

2.3.1 Sum-of-Products (SOP)

SOP usually has the form of F = XY Z +XY Z + . . . , every term should be the product of all the variables, appearing
exactly once. Such terms are named “minterms”. To implement the function F , first identify the rows in the truth table
where F = 1, then for each row, construct the minterm by taking the product of all the variables, such that the sum of
the minterms will give 1.

Example. From the truth table, we observe that F = 1 on the 3rd, 4th, and 7th rows.
For the 3rd row, the product ABC equals 1.
For the 4th row, the product ABC equals 1.
For the 7th row, the product ABC equals 1.
Therefore, the function F can be implemented as:

F = ABC + ABC + ABC

This method works because:

• any other input combinations will make all the minterms 0, and the sum of 0’s is 0;
• when one of the minterms is 1, the sum will be 1.

2.3.2 Product-of-Sums (POS)

Contrast to SOP, POS usually has the form of F = (X + Y + Z)(X + Y + Z) . . . . The approach is to identify the
rows in the truth table where F = 0, then for each row, construct a product (NOT sum) of all the variables, such that
the term give 1, then apply a NOT operation on the product. Connect all the terms together with AND operators, and
simplify using De Morgan’s Theorem.

Example. From the truth table, we observe that F = 0 on rows other than the 3rd, 4th, and 7th.
For the 1st row, we construct the product A ·B · C, which equals 0.
For the 2nd row, we construct the product A ·B · C, which equals 0.
. . .
For the 8th row, we construct the product A ·B · C, which equals 0.
Then, connect the terms together with AND operations, we have:

F =
(

A B C
)
·
(

A B C
)
·
(

A B C
)
·
(

A B C
)
·
(
A B C

)
For each product, apply De Morgan’s Theorem ABC = A + B + C to simplify, we have:

F = (A + B + C) · (A + B + C) · (A + B + C) · (A + B + C) · (A + B + C)

Remark. Whether to use SOP or POS depends on the truth table. Generally, when there are less 1’s in the truth
table, it is easier to use SOP. When there are less 0’s, it is easier to use POS.

2.3.3 Simplification by Boolean Algebra

After constructing the SOP or POS expression, it is possible to simplify the expression using the laws of boolean
algebra.
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Example. The F we have implemented using SOP can be simplified as follows:
F = ABC + ABC + ABC

= ABC + ABC + ABC + ABC

= AB
(
C + C

)
+

(
A + A

)
BC

= AB + BC

2.3.4 Simplification by Karnaugh Maps

For boolean expressions with two to four variables, construct Karnaugh maps to simplify the expression. Rule for
rows and columns: adjacent rows/columns must differ by only one variable. Rules for grouping 1’s: each group-

• should be as large as possible;
• must be rectangular in shape;
• must contain number of 1’s that is a power of 2 (1, 2, 4, 8, etc.);
• can overlap or wrap around the edges;
• should contain at least one 1 that is not in any other groups.

Example. To simplify F = ABC + ABC + ABC, construct the map:

BC
00 01 11 10

A 0 1 1
1 1

They can be separated into two groups - one horizontal and one vertical. For the horizontal group, observe that
regardless of the value of C, the value of F is always one, implying an expression of AB. For the vertical group,
the value of F is always one regardless of the value of A, implying an expression of BC. Therefore, the simplified
expression is AB + BC.

2.3.5 Application: Multiplexer

Example. Suppose we have a 2-to-1 multiplexer s defined as:

s =
{

a if t = 0
b if t = 1

The logical expression of the multiplexer is in fact s = f(a, b, t). To solve for the expression, write down the truth
table, and apply either SOP or POS to simplify the expression.

2.4 Adders
Adders can be created using logic gates. When they are chained together, they can be used to perform addition of

binary numbers. There are two types of adders:

• Half Adder: adds two bits together, produce a sum and a carry (2-in-2-out);
• Full Adder: adds two bits and a carry produced from the previous addition, produce a sum and a carry (3-in-2-out).

2.4.1 Half Adder

Consider the truth table of adding two digits A and B:

A B Sum (S) Carry (C)
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

We can observe that S = A⊕ B and C = A · B. However, the half adder cannot be used to add numbers with more
than one digit, because it does not take into account the carry from the previous addition.

2.4.2 Full Adder

Now take into account the carry from the previous addition (C ′), we have the following truth table:
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A B C ′ Sum (S) Carry (C)
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Apply SOP, we have:
S = ABC ′ + ABC ′ + ABC ′ + ABC ′

= C ′(AB + AB) + C ′(AB + AB)
= C ′(A⊕B) + C ′(A⊕B)
= C ′ ⊕ (A⊕B)

and
C = ABC ′ + ABC ′ + ABC ′ + ABC ′

= AB(C ′ + C ′) + C ′(AB + AB)
= AB + C ′(A⊕B)
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3 Number Representation
• Numbers are represented in binary form in computers.
• Mathematical laws do not necessarily hold in computer arithmetic. (e.g. 3.14 + 1e20− 1e20 ̸= 3.14 + (1e20− 1e20)

due to precision and rounding errors)
• Numbers in computers are Finite Precision Numbers.

Definition 3.1 (Finite Precision Numbers). Finite Precision Numbers have the following characteristics:
• Limited number of bits to represent a number. (e.g. 32-bit integers)
• Limited range of numbers that can be represented. (e.g. 232 for unsigned int)
• Overflow and underflow occur when the number is too large or too small to be represented.

3.1 Positional Number System and Radix

Definition 3.2 (Positional Number System). A positional number system is a system in which the position of a digit
in a number determines its value. Numbers are represented in a string of digits in the form of:

(anan−1 . . . a2a1a0.a−1a−2 . . .)r

where:
• n ∈ Z,
• r ∈ [2, +∞) ∩ Z is the radix (base) of the number system, which determines the value of each digit at position

i as ri,
• ai ∈ [0, r) ∩ Z.

The value of the number being represented is given by:∑
i

(air
i) (The Direct Approach) (1)

Generally, the radix value is one of 2 (binary), 8 (octal), 10 (decimal), or 16 (hexadecimal).

Example. The number 1A6.BE16 is a fractional number in hexadecimal system. Its value in decimal system is:
1A6.BE16 = 1× 162 + 10× 161 + 6× 160 + 11× 16−1 + 14× 16−2

= 422.742187510

Theorem 3.3 (Iterative Approach of Evaluating the Value of a Positional Number). The value of a number in a positional
number system can be evaluated alternatively by:

r (r (r (r · an + an−1) + an−2) + an−3 . . . ) + a0 (The Iterative Approach) (2)
which is more efficient than the direct approach.

Proof. Consider only the integer case. For the direct approach, for each digit ai, its value is calculated by
ai×r × r × · · · × r︸ ︷︷ ︸

i times
Therefore, for i = n, the number of multiplications performed is n times. The total number of multiplications
performed to convert a number of n digits is

1 + 2 + 3 + · · ·+ n = n(n + 1)
2 = O(n2)

For the iterative approach, the left most digit (an) is first multiplied by r and added to the next digit (an−1). This
sum is then multiplied by r and added to the next digit (an−2), and so on. The total number of multiplications
performed is n times. Therefore, the iterative approach has a linear complexity O(n).
Hence, the iterative approach is more efficient than the direct approach.

3.2 Integer Representation
3.2.1 Unsigned Integer Representation

Definition 3.4. For a sequence of n bits (an−1an−2 . . . a1a0), it represents a nonnegative integer of value A, where

A =
n−1∑
i=0

2iai
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3.2.2 Sign-and-Magnitude Representation

Definition 3.5. For a sequence of n bits, the MSB2is used to represent the sign of the number. The rest n − 1 bits
represent the magnitude of the number. The value of the number is given by:

A = (−1)an−1

n−2∑
i=0

2iai

Example. For 4-bit integers, we have:
001101012 = +5310

101101012 = −5310

This representation has two pitfalls: 1. It has two representations for zero (00002) and (10002). 2. It is inconvenient
for arithmetic operations. Therefore, this representation is rarely used to represent integers.

3.2.3 One’s and Two’s Complement Representation

Definition 3.6 (One’s Complement). For each positive integer, its one’s complement representation is unchanged. For
each negative number, its one’s complement representation is obtained by flipping all the bits of its corresponding
positive number.

Example. For 8-bit representation of +8, its one’s complement is 0000 10002. For −8, its one’s complement is
obtained by flipping every bit of +8, which is 1111 01112.

One’s Complement representation still has two representations for zero (00002) and (11112). Therefore, Two’s
Complement representation is more commonly used.

Definition 3.7 (Two’s Complement). For each positive integer, its two’s complement representation is unchanged. For
each negative number, its two’s complement representation is obtained by adding 1 to its one’s complement.

Example. For 8-bit representation of +13, its two’s complement is 0000 11012. For −13, its two’s complement is
obtained by adding 1 to its one’s complement, which is 1111 00102 + 0000 00012 = 1111 00112.

A = −2n−1an−1 +
n−2∑
i=0

2iai

For the “negative zero”, by the definition of two’s complement, its 8-bit representation will be −010 = 1111 11112 +
0000 00012 = 1 0000 00002. However, since the result is 9 bits, the carry bit is discarded, and the result is 0000 00002,
which is the same as the representation of the “positive zero”. The two’s complement has only one representation for
zero.

For arithmetic operations, simply add the two numbers together, and discard any carry from the MSB, the result will
be the correct answer.

Remark. Like the Sign-and-Magnitude representation, the One’s and Two’s Complement representations use the MSB
as the sign bit.

Theorem 3.8 (Overflow Rule for Two’s Complement). When two numbers of the same sign are added, overflow occurs
iff the result has an opposite sign.

3.2.4 Range Extension

It is sometimes useful to store an integer that requires n bits in m bits (m > n). Different methods are needed for
different representations.

• Unsigned Integer: Add more bits to the left and fill them with zeros.
• Sign-and-Magnitude: Add more bits to the left. Move the sign bit to the new MSB, and fill the rest with zeros.
• Two’s Complement: Add more bits to the left. Fill the new bits with the sign bit. (Sign Extension)

2Most Significant Bit (the leftmost bit)
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3.3 Integer Arithmetic Operations
3.3.1 Negation of Two’s Complement

Definition 3.9 (Negation of Two’s Complement). To negate a number in Two’s Complement representation, take the
Two’s Complement of the number.

3.3.2 Addition and Subtraction

Addition of two numbers in Two’s Complement is the same as if they were unsigned integers. Refer to Theorem 3.8
for overflow rule. For subtraction, negate the second operand and perform addition.

3.3.3 Multiplication

To make explanations clear, we call the first operand the multiplicand and the second operand the multiplier.
For unsigned integers, perform:

1. For the i-th bit of the multiplier, if it is 1, shift the multiplicand left by i bits and add it to the partial sum. (ai as
in anan−1 . . . a1a0)

2. If the i-th bit of the multiplier is 0, do nothing.
3. Return the partial sum as the result.

For two’s complement integers with both operands being positive, perform the same steps as for unsigned
integers. For two n-bit two’s complement integers with one or both operands being negative, perform:

1. For the i-th bit of the multiplier, where i ∈ [0, n− 1], if it is 1, shift the multiplicand left by i bits, then sign-extend
it to 2n bits, and add it to the partial sum.

2. For the MSB of the multiplier,
• If it is 1, take the two’s complement of the multiplicand, sign-extend it to 2n bits, and add it to the partial

sum.
• If it is 0, do nothing.

3. Sum the partial sums, ignore the carry bit, and return the result.

Example (Multiplication of −11 and −13 in 8-bit two’s complement).
1111 0011 (multiplicand −13)
× 1111 0101 (multiplier −11)

1111 1111 1111 0011 (left shift by 0, sign-extend)
1111 1111 1100 11 (left shift by 2, sign-extend)
1111 1111 0011 · · ·
1111 1110 011
1111 1100 11

+ 0000 0110 1 (two’s complement of multiplicand, sign-extend)
��101 0000 0000 1000 1111 (product +143)

Theorem 3.10. Multiplying an n-bit integer by an m-bit integer produces a product of at most (n + m) bits.

3.3.4 Division

Not covered in this course.

3.4 Floating-Point Representation
3.4.1 Excess-K (Bias) Representation

Definition 3.11 (Excess-K Representation). In an n-bit Excess-K representation, the values that are represented are
in the interval of [0 − K, 2n − 1 − K], where the smallest value is represented by all bits being 0, and the greatest
value is represented by all bits being 1.
The K is referred to as an offset, or bias, as it is subtracted from the bit pattern value to obtain the represented true
value.
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Example. In a 3-bit Excess-5 representation, we have:
Bit Pattern Bit Pattern Value True Value

111 7 2 (= 7− 5)
110 6 1
101 5 0
100 4 -1
011 3 -2
010 2 -3
001 1 -4
000 0 -5

The K is typically chosen to be 2n−1 or 2n−1 − 1, with the latter being more common.
The Excess-2n−1−1 representation is used for representing a floating-point number as regulated by the IEEE3standard.

3.4.2 IEEE 754-2008 Floating-Point Number Representation

Definition 3.12 (Format of a Floating-Point Number). A floating-point number is represented in the form of:
±Significand× 2 ± (Biased) Exponent

In a general 32-bit IEEE floating-point number, it is stored in memory by:

The floating-point number is always normalised before being stored. A normal number is the one with the MSB being
1. The convention is to always make the radix point to the right of the MSB, i.e. the MSB is always 1. Therefore, the
MSB is never stored in memory. A normal nonzero number takes the form:

±1. bbb . . . b︸ ︷︷ ︸
23 bits

×2 ± E

The exponent is stored in Excess-127 (28−1− 1). Meaning that 127 is added to the true exponent before being stored.
Note that since there is always a leading 1, the significand is always in the range of [1, 2). This implies that when

the floating-point number is too far away from or too close to zero, it cannot be represented accurately. The following
diagram shows the range of representable values of a 32-bit floating-point number (not the IEEE standard):

The diagram shows 0 is in the range of underflow, which can be inconvenient. Therefore, special values are defined in
the IEEE standard to represent 0, ±∞, and NaN (Not a Number).

• ±0: Biased exponent and significand are all 0. The sign bit determines the sign.
• ±∞: Biased exponent is all 1, and significand is all 0.
• NaN: Biased exponent is all 1, and significand is not all 0.
• Subnormal numbers: Biased exponent is all 0, and significand is not all 0. (±2−126(0.S)) Allows gradual underflow.

Remark. In assignments and exams, unless specified, the above special meanings are not considered.

IEEE 754-2008 defines three types of binary floating-point numbers - single precision (Binary32), double precision
(Binary64), and quadruple precision (Binary128). The following table shows the parameters of each type:

3Institute of Electrical and Electronics Engineers
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Example (Manual conversion of a decimal number to Binary32 floating-point number). To convert -23.875 to a 32-bit
floating-point number, we have these steps:

• Convert -23.875 to binary: −23.87510 = −10111.1112

• Normalise the binary number: −10111.1112 = −1.01111112 × 24

• Convert the exponent to biased exponent: 4 + 127 = 131 = 100000112

• Set the sign bit, biased exponent, and significand: 1︸︷︷︸
sign

1000 0011︸ ︷︷ ︸
biased exponent

0111 1110 0000 0000 0000 000︸ ︷︷ ︸
significand

Theorem 3.13. Some important properties of floating-point numbers:
• The number of representable values of a n-bit floating-point number is NOT greater than that of a n-bit integer

(both being 2n).
• The representable values of a floating-point number are NOT uniformly distributed.

3.5 Floating-Point Arithmetic Operations
3.5.1 Addition and Subtraction

Steps for floating-point number addition and subtraction:

1. For the number with the smaller exponent, shift the significand right by the difference in the exponents to align
their radix points.

2. Add or subtract the significands, then determine the sign of the result.
3. Normalise the result. Truncate the significand to the largest number of bits allowed.

Generally, there are five phrases in floating-point addition and subtraction:

1. Check for zeros;
2. Alignment of significands;
3. Addition/Subtraction of significands;
4. Normalisation of the result;
5. Rounding.

A typical floating-point addition/subtraction is illustrated in the following flowchart:
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Figure 2: Floating-Point Addition and Subtraction Flowchart

3.5.2 Multiplication

Consider the multiplication illustrated in the equation:
±m1 × 2exp1 ×±m2 × 2exp2 = ±m1 ×m2 × 2exp1+exp2

where exp is the real exponent value stored in Excess-K, whose bit pattern is e := exp + K. To perform multiplication,
the exponents are added, and the significands are multiplied. The result is then normalised.

Consider the addition of the exponents’ bit pattern, we have:
exp1 + exp2 = (e1 −K) + (e2 −K)

expsum = e1 + e2 − 2K

esum −K = e1 + e2 − 2K

esum = e1 + e2 −K

Therefore, the bias K is subtracted from the sum of the exponents’ bit patterns. Then, determine the sign of the result,
and normalise and round the result.

3.5.3 Division

Division of floating-point numbers is similar to multiplication. It is defined by:
±m1 × 2exp1

±m2 × 2exp2
= ±m1

m2
× 2exp1−exp2

For the division of the exponents’ bit patterns, we have:
exp1 − exp2 = (e1 −K)− (e2 −K)

expdiff = e1 − e2

ediff −K = e1 − e2

ediff = e1 − e2 + K

Therefore, the bit patterns of the exponents are subtracted, and the bias K is added to the result. Then, determine the
sign of the result, and normalise and round the result.

Flowcharts showing floating-point multiplication and division are shown below.
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Figure 3: Floating-Point Multiplication and Division Flowcharts

3.5.4 Approximation of Floating-Point Arithmetic

Floating-point numbers are prone to precision errors due to the following reasons:

• Not all numbers can be represented precisely in binary, e.g. 0.210 =0.00110011. . . 2.
• Round-off errors: some digits of the significand is lost to the left or right end of the significand when being shifted.

Due to errors, the Associative Law do not necessarily hold, especially when a very large number is calculated with a
very small number. In such cases, different orders of operations may yield different results.

Different approaches for rounding a floating-point number include 1. round to nearest, 2. round towards zero, 3. round
towards ±∞.
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4 Instruction Execution Cycle
4.1 Terminologies and Basic Information

Terminologies:

• Byte: 8 bits, smallest addressable unit of memory.
• Word: Unit of organisation of memory, varies from system to system. e.g. 32-bit, 64-bit, etc.
• Register: Small, fast storage location within the CPU.
• Word Addressing: Addresses of memory on a computer that uniquely identify a word.
• Byte Addressing: Addresses of memory on a computer that uniquely identify a byte.

Registers inside a CPU:

• PC (Program Counter): Holds the address of the next instruction to be fetched.
• IR (Instruction Register): Holds the current instruction.
• MAR (Memory Address Register): Holds the address of the memory location to be accessed.
• MBR (Memory Buffer Register): Holds the data to be written to or read from memory. (Also, MDR)
• I/O AR and I/O BR: Similar to MAR and MBR, but for I/O operations.

Data are transferred through system bus. The source register put the data on the bus, then the destination register pulls
the data from it. At any given time, only one data transfer can be performed on one bus.

4.2 Instruction Execution Cycle
Remark. This note assumes the computer uses 32-bit word.

A typical instruction execution cycle consists of these stages:

1. Instruction Fetch (IF);
2. Instruction Decode (ID);
3. Instruction Execution, which includes:

(a) Calculate Operand Address (CO);
(b) Operand Fetch (OF);
(c) Execution (EI);
(d) Write Operand (WO);

Figure 4: Instruction Execution Cycle with Interrupts Handling

4.2.1 Instruction Format

An instruction can be one-word or multi-word. A typical form of instruction may have the format of:

Byte 0 Byte 1 Byte 2 Byte 3
Opcode Source Operand 1 Source Operand 2 Destination Operand
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where opcode stands for operation code, for example, ADD (0x00), SUB (0x01), AND (0x02), OR (0x03), NOT (0x04)
etc.

Types of Operations: (1) Data transfer (e.g. MOV, LD, ST); (2) Arithemtic (e.g. ADD, SUB); (3) Logical (e.g. AND, OR,
NOT); (4) Transfer of control (e.g. BR, CALL); (5) Input/Output (see Port-mapped I/O in Section 6); (6) Data conversion
(e.g. NEG - negate, SXT - sign extend).

Logical Operations vs Arithmetic Operations:

1. Arithmetic and Logical Operations:
Consider this operation: ADD R1, R2, R3 (or in pseudocode, R3 = R1 + R2), the instruction is represented as
0x00010203. Since ADD requires two source operands and one destination operand, all fields are used.
Consider NOT R1, R2 (or in pseudocode, R2 = NOT R1), the instruction is represented as 0x04010002. Since NOT
uses only one source operand, the second source operand is set as 0x00.

2. LD and ST Instructions:
For instructions that uses memory, a two-word instruction is needed as the memory address cannot fit in the
operand. Assume that LD (0x06) and ST (0x07). For example, LD P1(0x0000003c), R1, which loads the content
of memory address P1 to register R1, the instruction is represented as 0x0600ff01 0000003c. The format is:

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
Opcode (LOAD) Source (0x00) Addressing Mode (0xff) Destination Memory Address

Word 0 Word 1

Remark. For simplicity, there is only one addressing mode (0xff) used in this section.

3. Branching Instructions:
A branching instruction has the following format:

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
Opcode (Branch) Condition Code Address/Addressing Mode (not used) Address of Destination Instruction

Word 0 Word 1

Examples of condition codes are:

Instruction Condition Code Meaning
BR 0x00 Unconditional branch
BZ 0x01 Branch if zero
BNZ 0x02 Branch if not zero

By saying “zero”, it means to check the zero flag of the ALU to determine if the previous operation resulted in zero.
Other flags may also be used.

Example. Consider this code (on the right side is the machine code in hexadecimal):

LD P2, R2 ; 0000: 0600ff02 00000034
LD P1, R1 ; 0008: 0600ff01 00000030
LD P3, R3 ; 0010: 0600ff03 00000038
MOV R2, R4 ; 0018: 05020004

L: ADD R2, R3, R2 ; Increment R2 by 1 001C: 00020302
SUB R1, R2, R4 ; R4 = R1 - R2 0020: 01010204
BNZ L ; If R4 != 0, go to L 0024: 0802ff00 0000001C
HLT ; 002C: 09000000

P1: .WORD 5 ; 0030: 00000005
P2: .WORD 0 ; 0034: 00000000
P3: .WORD 1 ; 0038: 00000001
P: .WORD ; 003C: 00000000

The BNZ instruction is used to create a loop that increments R2 by 1 until R1 - R2 is zero. The program halts
when the condition is met.

4. Halt Instruction:
The HLT instruction is used to halt the program. It does not use any operands and those fields are set to 0x00.

Remark. Read Section 7.1: More on Instruction Format for an extension on this topic.

4.2.2 Instruction Fetch

Address to the next instruction is stored in PC register, which is incremented automatically during execution. For a
two-word instruction, the first word is fetched first, then PC is incremented by 1 word to point to the second word. Then
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the second word is fetched, and PC is incremented again to point to the next instruction.
Note that PC is will be changed when branching happens.
This process is called Instruction Address Calculation (IAC).
During IF, the following data transfer happens:

MAR← PC
PC← PC + 1

MBR← Memory[MAR]

4.2.3 Instruction Decode

The control unit will decode the instruction and setup the ALU and other components for appropriate operations
(e.g. memory read/write, data transfer, etc.). These actions are carried out at appropriate times by the control unit.

4.2.4 Operand Fetch

If the operands are in registers, data are moved from registers to ALU.
If the operands are in memory, then the instruction would be a two-word instruction. Note that if PC points to

the second word of a two-word instruction, after the above process, MBR will contain an address at which data of the
operand is stored, not the content. Therefore, another memory read is needed to fetch the content, by:

MAR← MBR
MBR← Memory[MAR]

4.2.5 Execution

The ALU performs the operation specified by the instruction. The result is stored in some temporary register.

4.2.6 Result Store

Similar to operand fetch, if the destination is in register, RF write is performed. If the destination is in memory, then
operand address calculation is first performed. Then the data is written to memory.

4.2.7 Interrupt Handling

Interruptions are important as:

• They improve efficiency.
• When an I/O arrives, it may need immediate attention, or data may be lost. e.g. incoming data from a network.
• Other programs may also need the CPU’s attention. e.g. on a time-sharing system.

When interruption is required, I/O device sends a signal to the CPU. The CPU will need to remember the current
state of the program, and then jump to serve the interrupt. The CPU will then return to the original program and
continue execution as if nothing happened.

Interrupt handlers can either be hardware or software.
Interrupt signals are checked at the end of one complete instruction cycle, minimising the registers that need to be

saved/restored. Before each interrupt, the following information is saved (by pushing to the stack):

• Flag register – to remember the state of the ALU.
• PC – to remember the address of the next instruction.
• Modified register files.
• The current address of the instruction – to remember where the program was interrupted, while the address of the

interruption program is loaded to PC.

Other registers (like MAR, MBR, IOAR, etc.) are not saved as they are only meaningful during the current instruction
cycle.
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5 Memory
5.1 Memory Hierarchy

Different types of memory exhibit different performance and impose different costs of production. To achieve a balance
between performance and cost, a hierarchy of memory is introduced.

1. Inbound Memory: The fastest memory in the hierarchy.
• Registers: inside the processor.
• On-chip Cache: on the CPU chip.
• Cache Memory: on the motherboard.
• Main Memory: RAM, on the motherboard.

2. Outbound Storage: Secondary memory. e.g. hard disk, SSD, DVD, etc.
3. Off-line Storage: magnetic tapes, etc.

Going from top to bottom, we observe the following trends:

• Capacity: increases.
• Cost per bit: decreases.
• Access time: increases.
• Frequency of access: decreases.

5.1.1 Principle of Locality

Definition 5.1 (Principle of Locality). The Principle of Locality states that programs do not access all memory locations
uniformly. Some memory locations have higher tendency to be accessed than others.

There are two types of locality:

Definition 5.2 (Temporal Locality). If a memory location is accessed, it is likely to be accessed again soon.

Definition 5.3 (Spatial Locality). If a memory location is accessed, it is likely that nearby memory locations will be
accessed soon.

Example. Consider the following code:

for (int i = 0; i < 100; i++) {
sum += arr[i];

// sum is accessed in every iteration -> temporal locality
// consecutive memory locations of arr[] are accessed -> spatial locality

}

5.1.2 Memory Organisation

For multi-byte data, they are stored differently in memory on different architectures.

• Big Endian Mode: Stored in memory from left to right. (e.g. IBM mainframes)
• Little Endian Mode: Stored in memory from right to left. (e.g. Intel x86)

Example. For storing the 4-byte integer 0x12345678 in memory:

Address 101 102 103 104
Big Endian 12 34 56 78

Little Endian 78 56 34 12

5.1.3 Unit of Transfer

CPU reads data not from main memory but from cache memory, as main memory is much slower. Between cache and
main memory, data are transferred in blocks, which contain multiple bytes (e.g. 4 KBytes).

5.1.4 Access Methods

1. Sequential Access: Data is accessed from the beginning to the end.
2. Random Access: Data can be accessed in any order directly, by providing the address. Has a constant latency.
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3. Associative Access: Data can be accessed by providing the content of the data, not the address. Used in cache
memory and Content-Addressable Memory (CAM).

5.2 Internal Memory
This section presents some common CMOS4 memory technologies and their characteristics.

5.2.1 Read-Only Memory (ROM)

• Fabricated like integrated circuit chips.
• Non-volatile memory, i.e., retains data even when power is turned off.
• Programmable ROM (PROM): Can be programmed once. Usually done by supplier or customer after chip is

manufactured.
• Content cannot be changed.

5.2.2 Read-Mostly Memory

• Erasable Programmable ROM (EPROM): Can be erased and reprogrammed multiple times. Erasing is done
by exposing the chip to ultraviolet light for a specified time.

• Electrically Erasable PROM (EEPROM): Can be erased and reprogrammed in place. Only the bytes
addressed are changed. Erasing process is slow.

5.2.3 Flash Memory

• Non-volatile memory.
• Between EPROM and EEPROM.
• Faster write than EEPROM.
• Have limited number of write cycles.
• Usage: USB drives, SSD, storage of BIOS (in recent years).

5.2.4 Random Access Memory (RAM)

Characteristic Dynamic RAM Static RAM
Storage Technology Use transistors to store electric charges. Use logic gates (latches).
Refreshing Required (every few ms due to leaking charge) Not required
Speed Slower (delay due to capacitance) Faster
Usage Main memory Cache memory
Cost Cheap Very expensive

5.2.5 Comparison of Memory Types

Memory Type Category Erasure Write
Mechanism Volatility

RAM Read-write Electrically,
byte-level Electrically Volatile

ROM Read-only Not possible Masks

Nonvolatile
PROM

ElectricallyEPROM
Read-mostly

UV light,
chip-level

EEPROM Electrically,
byte-level

Flash Electrically,
block-level

5.2.6 Bench-marking Memory Performance

Key metrics for memory performance include:

• Access Time: Time taken to read/write data.
• Bandwidth/Transfer Rate: Rate at which data can be read/written.
4Complementary Metal-Oxide-Semiconductor
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• Memory Cycle Time: (Access Time + Transfer Time).

Example. A two-level memory system has an upper level with 0.01µs access time and a lower level with 0.1µs. The
upper level has a hit rate of 95%. The average time to access memory is:

0.01× 0.95 + (0.01 + 0.1)× 0.05 = 0.015µs

5.2.7 Error Detection and Correction

Errors may arise from various sources such as spike in voltage (lightning), electromagnetic interference (cosmic ray),
power supply problems, etc. Extra bits are required to detect errors. (Usually in secondary storage devices but not in
main memory as it is volatile and less likely to have errors.)

Common error detection and correction methods include:

• Parity Bit: Extra bit added to data to make number of 1s even/odd. (Cannot be used to correct errors when the
location of the error is unknown. Cannot detect 2n-bit errors.)

Definition 5.4 (Even Parity Bit). Suppose there are a series of bits (b1b2b3 · · · bn−1), then the even parity bit bn

is given by:
bn = b1 ⊕ b2 ⊕ b3 ⊕ · · · ⊕ bn−1

Theorem 5.5 (Error Correction by Parity Bits). Parity Bits can be used to recover errors iff the number of errors
is one and the location of the error is known.

Example. [5.5]
Suppose we have a bit pattern b1b2b3p, where p is the parity bit. By Definition 5.4, we have

p = b1 ⊕ b2 ⊕ b3

Given that b2 is lost, we can recover b2 by applying ⊕b2 ⊕ p on both sides of the equation, then we have:
p⊕ b2 ⊕ p = b1 ⊕ b2 ⊕ b3 ⊕ b2 ⊕ p

b2 = b1 ⊕ b3 ⊕ p

• Hamming Code
• Repetition Code

5.3 Cache Memory
Cache memory is transparent (hidden) to the software and is managed by the hardware. It stores copies of frequently

accessed data to speed up subsequent access to that data.
There can be one or more layers between the CPU and main memory. The transfer between the CPU and L1 cache

is the fastest, and the speed decreases as the distance from the CPU increases.

5.3.1 Cache Memory Organisation

A word-addressable main memory with n-bit addresses has 2n words. Divide the main memory into blocks of K words
each, then the memory has M = 2n

K blocks. Suppose the cache has m blocks, called lines. Generally, we have m≪ M .
Each line has K words, a tag, and several control bits. The length of the line, excluding the tag and the control bits is
called the line size or block length.

Figure 5: Cache Memory Organisation
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5.3.2 Cache Memory Read

The process of reading from the cache is roughly described as follows:

1. Obtain the address of the word to be read from the CPU.
2. Check if the block containing the word is in the cache.

(a) If the block is in the cache, read the word from the cache.
(b) If the block is not in the cache, load the block from the main memory into the cache, and at the same time

deliver the word to the CPU.

5.3.3 Address Mapping

There are three ways to map the main memory to the cache:

1. Direct Mapping: Each block of main memory maps to exactly one line in the cache. The mapping is given as
i = j mod m

where i is the cache line number, j is the main memory block number, and m is the number of cache lines.

Example. The cache logic treats the main memory address in three parts as follows:
(s−r) bits (tag)︷ ︸︸ ︷

0000 0001
r bits (line number)︷ ︸︸ ︷
1111 1111 1111 11︸ ︷︷ ︸

block number

w bits (word)︷︸︸︷
00

The least significant w bits identify the word within the block, where the block size is 2w words. The next r bits
identify the line number within the cache memory, where the cache memory has 2r lines. The most significant
(s− r) bits are the tag bits, which are used to distinguish between the different main memory blocks that map
to the same line, where the main memory has 2s blocks.

Remark. If the main memory is byte-addressable, then the word bits should be referred to as byte offsets,
and they correspond to the number of 2w bytes in a block.

To perform a read operation, the line number first identifies the line in the cache. Then, the tag bits in the line
are compared with the tag bits in the address. If the tags match, the word is read from the cache according to the
word bits in the address. If the tags do not match, the block is read from the main memory into the cache, and the
word is read from the cache.

Advantages:
• Only need to check one cache line, fast.
• No selection is required, less use of logic gates,

inexpensive.

Disadvantages:
• When two blocks map to the same line are accessed

alternatively, constant cache misses occur.
• The cache is not fully utilised.

2. Fully Associative Mapping: Any block of main memory can be loaded into any line of the cache. The main
memory address is treated as two parts only – the tag and the word bits. Again, for a main memory address of
(s + w) bits, and a cache memory with block length of 2w words, the word bits are the least significant w bits, and
the tag bits are the remaining s bits.
To perform a read operation, the cache controller searches the entire cache for the desired tag. If it is a miss, the
block is read from the main memory into the cache.

Advantages:
• More flexible use of cache than direct mapping.
• Higher hit rate.

Disadvantages:
• Requires more complex logic and circuits for tag

comparison, more expensive.
• Must simultaneously search all cache lines, slower.

3. Set Associative Mapping: The cache consists of a number of sets, and each sets consists of a number of lines.
Their relationship is given by

m = v × k

i = j mod v

where i is the set number, j is the main memory block number, m is the number of lines in cache, v is the number
of sets, and k is the number of lines in each set. (k is usually 2, the maximum is 8.) Also referred to as k-way set
associative mapping.
Block Bj in main memory maps to any of the lines in set j in the cache. There are two ways of implementing a set
associative mapping, either as
(a) v associative-mapped caches (usually used for high associativity, i.e. larger k). Each cache is called a set.
(b) k direct-mapped caches (for lower associativity). Each cache is called a way.
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The cache control logic treats the (s + w)-bit main memory address in three parts: tag, set, and word. The d bits
of set identifies the set in cache, where v = 2d. The least significant w bits identify the word. The remaining (s−d)
bits are the tag bits.
With this method, the tag size is much smaller than in fully associative mapping, and each tag is only compared
with k tags in a single set.

Advantages:
• Fewer misses than direct mapping.

Disadvantages:
• Complex selection and comparison logic, slightly

slower.

Example. Suppose a computer has a byte-addressable main memory with addresses of 32 bits, a 64 KB 2-way set
associative cache memory, and the block size is 128 bytes. Find the number of bits in the tag, set, and word fields of
the main memory address.

Solution. Since the block size is 128 (27) bytes, then the word field is 7 bits.
Number of blocks in cache memory is 64× 210 ÷ 27 = 512 blocks.
Number of sets in cache memory is 512÷ 2 = 256 = 28 sets. Therefore, the set field is 8 bits.
The remaining bits are the tag field, which is 32− 8− 7 = 17 bits.

Tag Set Word
17 8 7

5.3.4 Replacement Algorithms

When all lines are occupied and a new block needs to be loaded into the cache, a line must be selected to be replaced.
The different replacement algorithms are:

1. Random Replacement (RR): A random line is selected to be replaced. This is the simplest method, but it does
not guarantee the best performance. Not used in practice.

2. First-In-First-Out (FIFO): The line that has been in the cache the longest is replaced. It does not consider the
frequency of use of the block.

3. Least Recently Used (LRU): The line that has not been used for the longest time is replaced.
4. Least Frequently Used (LFU): The line that has the fewest references is replaced, often implemented with a

counter.

Note that replacement algorithms do not apply to direct-mapped caches, as there is only one possible line to replace.

5.3.5 Write Policies

To maintain consistency between the cache and main memory, the main memory must be updated whenever the cache
line to be replaced has been modified. There are two write policies:

1. Write-Through: The main memory is updated whenever the cache is updated. This ensures that the main
memory is always up-to-date, but it is slower as the CPU must wait for the main memory to be updated.

2. Write-Back: The line is associated with a dirty bit that is set whenever the line is modified. The main memory
is only updated when the line is replaced and the dirty bit is set. This method minimises the number of main
memory writes and is faster. The main drawback is that the main memory may be inconsistent.

5.3.6 Performance

Definition 5.6 (Average Access Time). The average access time of a cache memory is given by
Average Access Time = Hit Rate×Hit Time + Miss Rate×Average Time When Miss

= Hit Time + Miss Rate×Miss Penalty

Example. Assume the access time of main memory is 50 ns, the L1 cache has a miss rate and access time of 10% and
1 ns, respectively, the L2 cache has a miss rate and access time of 5% and 5 ns, respectively, and the L3 cache has a
miss rate and access time of 2% and 10ns, respectively. Calculate the average access time of the memory system.

Solution. When there is no cache, access time = 50 ns.
When there is only L1 cache, access time = 1 + 10%× 50 = 6 ns.
When there are L1 and L2 caches, access time = 1 + 10%× (5 + 5%× 50) = 1.75 ns.
When there are L1 to L3 caches, access time = 1 + 10%× (5 + 5%× (10 + 2%× 50)) = 1.555 ns .

Example. Consider a hypothetical machine with 512 words of cache memory. They are in two-way set associative
organisation, with cache block size of 64 words, using LRU replacement. Suppose the cache hit time is 8 ns, and the
time to transfer the first word from main memory to cache is 60 ns, while subsequent words require 10 ns each.
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1. What is the cache miss penalty?
2. If there is a read sequence of 28 blocks accessed that has 15 cache misses, what is the cache hit rate?
3. What is the average memory access time?

Solution. 1. Cache miss penalty is the time to transfer one block from main memory to cache. 60 + 63× 10 =
690 ns

2. Cache hit rate = 1− 15
28×32 = 98.33% .

3. Average memory access time = 8 + (1− 0.9833)× 690 = 19.52 ns .

5.3.7 Unified Cache and Split Cache

1. Split Cache: The cache is divided into instruction cache and data cache. Size for each cache is fixed. No pipeline
hazard. The main trend is to use split cache.

2. Unified Cache: The cache is used for both instructions and data. Instructions and data are automatically
balanced. Has contention problem on parallel and pipeline execution that imposes bottleneck on performance.

5.4 Virtual Memory
In multitasking operating systems, the demand of memory is often greater than the available physical memory. To

solve this problem, virtual memory is introduced.
Physical Address vs Logical Address:

• Physical Address: The address used to actually access the physical memory, which can be smaller (e.g. 1 GiB).
• Logical Address: The addressing space that a program/process sees, which can be larger. (e.g. 4 GiB if 32-bit)

Mapping between logical and physical addresses is done by the Memory Management Unit (MMU). Similar to
Cache memory, the MMU is based on the principle of locality. It maps a logical address (of a program) to a physical
address (of the memory).

5.4.1 Paging & Page Table

Physical memory is divided into fixed-size blocks called frames, and logical memory is divided into blocks of the same
size called pages.

Each process has its own logical address space, hence each process will be divided into several pages. The OS maintains
a page table for each process.

Each page in logical address space has a corresponding page table entry (PTE). The format of a PTE is roughly:

1 bit several bits 1 bit serveral bits
Valid bit Protection Bits Dirty Bit Physical Frame #

• Valid Bit: Indicates whether the page is in memory or not.
• Protection Bits: Indicate the access rights of the page (read, write, execute, user/kernel access).
• Dirty Bit: Indicates whether the page has been modified or not.
• Physical Frame #: The frame number in physical memory where the page is stored.

5.4.2 Demand Paging & Page Fault

When a program is loaded, not all its pages are loaded at once. The OS only loads the pages needed, i.e. on demand,
hence the name demand paging. Pros: fast response since only a few pages are loaded, and less memory usage. Cons:
a lot of page faults until a stable set of pages is loaded.

When the program branches to another instruction on a page that is not in memory, a page fault occurs. The
program will be suspended and the OS will take over to load the required page, then restart the program.

When the memory is full and no free frames are available, the OS will use different replacement algorithms to select
a frame to be replaced. The algorithms are the same as those introduced in Section 5.3.4.

5.4.3 Address Translation & TLB

The logical address has a page # and an offset. The page number will be used to look up the page table to find the
corresponding physical frame #. Then, after adding the offset, the physical address can be obtained and data can be
fetched from the memory.

This process involves two memory accesses: page table lookup and data access. To speed up, a Translation
Lookaside Buffer (TLB) is used. The TLB acts like a cache, which maintains a small number of valid PTEs. If
a PTE is not in TLB, then the page table is consulted.
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Figure 6: Rough process of paging operation

Figure 7: TLB and cache operation
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5.5 External Memory
5.5.1 Hard Disk Drives (HDD) - Magnetic Disks

Figure 8: Disk Data Layout

Terminologies about the HDD layout and components
• Platter: Magnetically coated disks.
• Track: Concentric rings on a platter.
• Sector: A segment of a track, usually 512 bytes.
• Cylinder: Tracks of different platters that are under the read/write head at the same time.

Formats of Tracks
Tracks contain sectors that hold data and other bits that are useful for the disk controller. The example of a track

format can be:

• Each track contains 30 sectors of fixed-length 600 bytes, with 512 bytes for data and 88 bytes for control information.
• Each sector contains several fields:

– Gap 1 (17 bytes): Used to separate sectors.
– ID Field: Contains Synch (1 byte), Track, Head, Sector # (4 bytes), and CRC (2 bytes).
– Gap 2 (41 bytes): Used to separate ID field and data field.
– Data Field (515 bytes): Contains 1 Synch byte, 512 bytes of data, and 2 CRC bytes.
– Gap 3 (40 bytes)

(a) CAV (b) MZR

Figure 9: Disk Layout Methods
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Disk Layout Methods
• Constant Angular Velocity (CAV): Blocks of data can be directly addressed by track and sector. Read/write

is easy. However, density of data decreases from the inner tracks to the outer tracks, which wastes space.
• Multiple Zone Recording (MZR): Divides the disk into zones, with each zone having a different number of

sectors per track. Note that the data density is not exactly the same, but only approximated to be the same. This
allows maximised storage capacity.

Disk Access Time
• Seek Time: Move the read/write head from one cylinder to another. Depends on start and destination. Typical

values: 5 - 15 ms (start up), 0.2 - 1 ms (consecutive tracks).
• Rotational Latency: Time for the required sector to rotate under the head. Average latency is the time for half

a revolution.
Example. For a disk rotating at 7200 RPM, the average latency is given by:

1
7200 rotation minute−1 ×

60 s
1 minute × 1000 ms s−1 × 1

2 rotation = 4.17 ms

• Data Transfer Time (tT ): Typically, tT ≪ seek + latency.

tT = b

N
× 1

r
where b is bytes to be transfered, N is bytes per track, and r is the rotation speed in rps.

5.5.2 Redundant Array of Independent Disks (RAID)

Characteristics of RAID
• Several disk drives are arranged together and appear as one single disk to the operating system (a logical disk).
• Files are distributed in strips across the disks.
• Strips can be in physical blocks, sectors, or other units.
• RAID allows parallel operation.
• Redundant capacity stores parity information which guarantees 24/7 operation.
• Several levels, from RAID 0 to RAID 6.

RAID 0 (Non-redundant)
• Data is written in consecutive sectors in a round-robin fashion.
• Efficient for accessing a block of data.
• One disk failure will cause all strips to be lost without recovery.

RAID 1 (Mirroring)
• Fault tolerant, can recover from multi-disk failure as long as one copy still exists.
• During read, either copy can be used, hence reduce seek time.
• One logical write requires two physical writes, reduces write performance.

RAID 2
• Uses extra disks to store Error Correction Codes (Hamming codes), which is very expensive.
• Number of redundant disks ≈ log2(number of data disks).
• No commercial usage.
• Potential advantage: (when strip size is small) efficient for parallel read.
• Universally controlled spindles (all read/write heads move in parallel without individual control).

RAID 3 (Bit-interleaved Parity)
• One extra disk is used to store parity bit of the data disks.
• Can recover from one disk failure. Refer to Example 5.5 for how parity bit can be used to recover data.
• Writing is also possible with one disk failure, use the above method to alter the parity bit.
• Error correction principle applies from RAID 3 to RAID 6.

RAID 4 (Block-level Parity)
• Similar to RAID 3, but parity is calculated on a block basis.
• Write to any block would result in the need of recauculating the parity block. Write penalty: 2 reads, 2 writes.
• Methods of writing: (1) Write data, recalculate parity, write parity; or (2) Write data, compare old data with new

data, add the difference to parity.
• Individual spindle control.
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• No commercial usage.

RAID 5 (Block-level Distributed Parity)
• Uses (n− 1) disks to store data.
• Difference from RAID 4: Parity is distributed across all disks.
• Difference from RAID 3: Parity is calculated on a block basis.
• Can endure one disk failure.
• Commonly used in Network Attached Storage (NAS).

(a) RAID Level 5 (b) RAID Level 6

Figure 10: Comparison between RAID 5 and RAID 6

RAID 6 (Dual Redundancy)
• Uses (n− 2) disks to store data.
• Similar to RAID 5, but uses two strips for parity, calculated by different methods.
• Parity distributed across different disks, require 2 extra disks.
• Can endure two disk failures.

Table 1: Advantages and Disadvantages of Different RAID Levels

Level Advantages Disadvantages
0 I/O performance greatly improved by spreading

data across disks.
No parity calculation overhead.
Very simple design & easy to implement.

One drive failure will result in data in one array to
be lost.

1 100% redundancy, no rebuild necessary when disk
fails.
May sustain multiple simultaneous drive failures.
Simplest RAID storage subsystem design.

Highest (100%) disk overhead of all RAID types.

2 High data transfer rate.
The higher transfer rate required, the better data
disk to ECC disk ratio.
Relatively simpler controller design than RAID 3-5.

Expensive.
Very high data disk to ECC disk ratio with smaller
word sizes.

3 Very high read/write data transfer rate.
Disk failure has insignificant impact on throughput.
Low ECC to data disk ratio, higher efficiency.

Controller design is faily complex.

4 Very high read data transfer rate.
Low ECC to data disk ratio, higher efficiency.

Quite complex controller design.
Worst write transaction rate and Write aggregate
transfer rate.
Difficult and inefficient data rebuild after disk
failure.

5 Highest Read data transaction rate.
Low ECC to data disk ratio, higher efficiency.
Good aggregate transfer rate.

Most complex controller design.
Difficult to rebuild data after disk failure as
compared to RAID 1.

6 Provides highest data fault tolerance.
Can sustain multiple simultaneous drive failures.

More complex controller design than RAID 5.
Controller overhead to compute parity is extremely
high.

5.5.3 Solid State Drives (SSD)

SSDs are non-volatile storage devices that are based on semiconductor technology. They have limited write cycles,
but are faster than HDDs.

Advantages of SDDs over HDDs:

28



• Faster I/O operation performance.
• Lower power consumption, cooler and quieter.
• Longer lifespan – no mechanical parts for read/write.
• Durability – less susceptible to physical shock.
• Lower access time.
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6 Input & Output

Figure 11: Generic Model of an I/O Module

6.1 Generic Model of I/O
Modules

An I/O module is:

• an interface between the processor and memory via
the system bus or central switch

• an interface to one ore more peripheral devices
through tailored data links

Major requirements on an I/O module:

• Asynchronous timing.
• Command decoding: interpret the commands sent

from the bus, e.g. SEEK.
• Data: exchange data via the data bus.
• Status reporting: e.g. Ready, Busy, Out of Paper

(printer).
• Address recognition: identify the address of a

peripheral device.
• Data buffering: for speeding up transaction because

the device may be slower.
• Error detection and correction.

The CPU operates I/O devices by reading/writing from/to the devices’ status/control/data registers. The registers
are mapped in two ways:

1. Memory-mapped I/O: the I/O device registers are mapped into the same address space as the memory. The
CPU can access the I/O device registers as if they were memory locations.

2. Port-mapped I/O: the I/O device registers are mapped into a separate address space from the memory. The
CPU uses special I/O instructions to access the I/O device registers.

6.2 I/O Techniques
Three types of I/O techniques for interacting with I/O devices:

• Not using interrupts: Programmed I/O
• Using interrupts:

– Interrupt-driven I/O (Memory ↔ CPU ↔ I/O)
– Direct Memory Access (DMA) (Memory ↔ I/O)

.

6.2.1 Programmed I/O

The processor executes a program to control the I/O devices via the Control and Status Registers (CSR). When the
CPU sends a command to the device, it must wait for the device to complete. This wastes CPU time.

6.2.2 Interrupt-Driven I/O

This technique attempts to alleviate the issues of Programmed I/O. After sending a command to the I/O module, the
CPU will carry on with other tasks. When the I/O module finishes, it sends an interrupt signal to the CPU. The CPU
will then handle the interrupt and return to its tasks.

The CPU sends a interrupt acknowledge signal (INTA) to the I/O module to indicate receipt of the interrupt signal.
The last instruction of the interrupt routine is a return from interrupt instruction (RETI). Refer to Section 4.2.7 for
interrupt handling procedures.

6.2.3 Direct Memory Access (DMA)

Interrupt-Driven I/O still involves CPU operations, which can be minimised by a special purpose processor – Input-
Output Processor (IOP).

To resolve bus conflicts between the CPU and IOP, the IOP steals cycles from the CPU by sending a signal to the
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Figure 12: I/O Techniques

CPU. The CPU will now see an elongated clock cycle, and will wait until the cycle ends to continue.
Difference between Interrupt-Driven I/O and DMA: The “interruption” in DMA is within one instruction

execution cycle, while the interruption in Interrupt-Driven I/O is after the instruction execution cycle, as illustrated in
Figure 13.

Figure 13: Difference between Interrupt-Driven I/O and DMA
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7 Instruction Sets
7.1 More on Instruction Format
7.1.1 Arithmetic & Logical Instructions

Arithmetic operations treat operands as numbers and have to consider the sign of the operands. Arithmetic shifts
are equivalent to multiplication (left shift) or division (right shift) by 2 with remainders shifted out. The new bits are
filled with sign bits on the left, and 0’s on the right.

Logical operations treat operands as bit patterns. Logical shifts simply discard the bits shifted out and replenish the
new bits with 0’s.

There are also rotate operations, which put the bits shifted out back into the other end of the number.

7.1.2 Procedures & Function Calls

A procedure consists of multiple instructions that are executed in sequence. Within a procedure, instructions can be
given to execute another procedure. For the CPU to know where to go and where to return after the called procedure is
done, the return addresses need to be stored, which is done by a stack. The latest return address will be at the top of
the stack, and the CPU will pop it when it reaches a return instruction.

7.1.3 Instruction Operands

In most applications, instructions either have three, two, one, or zero operands (or addresses). Symbolically, they are
represented as:

# of Operands Symbolic Representation Interpretation
3 OP A, B, C A ← B OP C
2 OP A, B A ← A OP B
1 OP A AC ← AC OP A
0 OP T ← (T-1) OP T

Note: AC = accumulator, T = top of stack, (T-1) = second element of the stack

Instruction operands can either be in main memory or in registers.

7.1.4 Registers

• General Purpose Registers: registers that can be used freely;
• Dedicated Purpose Registers: e.g. program counter (PC), instruction register (IR), stack pointer (SP),

processor status word (PSW), flag register;

7.1.5 Data Types

Two types of data types: (1) Numeric (integer, floating point); (2) Non-numeric (character, binary data). The lengths
are typically 8, 16, 32, or 64 bits.

For MIPS architecture (a family of reduced instruction set computer (RISC), not ARM or x86), have 9 basic data
types: (1) signed and unsigned bytes; (2) signed and unsigned half-words; (3) signed and unsigned words; (4) double
words; (5) single-precision floating point (32 bits); (6) double-precision floating point (64 bits).

For ARM architecture, it supports datatypes of (1) byte (8 bits); (2) half-word (16 bits); and (3) word (32 bits) in
length. It only provides unsigned integers, nonnegative integers, and two’s complement integers. The ARM architecture
does not provide floating point hardware and they must be emulated in software.

32



7.2 Addressing Modes

Figure 14: Addressing Modes

Remark. Notations used in this section: A = contents of an address (operand) field of an instruction; R = contents of
an address field that refers to a register; EA = effective address (actual address) of the location where the referenced
operand is stored; (X) = contents of memory location or register X.
(The parenthesis notation is similar to a dereference operator of a pointer in C/C++.)

7.2.1 Immediate

• Notation: Operand = A
• Advantage: No memory

references needed.
• Disadvantage: Limited

operand magnitude.

7.2.2 Direct

• Notation: EA = A
• Advantage: Simple and

increased operand magnitude.
• Disadvantage: Limited address

space. (Range of memory
addresses accessible to the
instruction depends on the size
of the address field.)

7.2.3 Indirect

• Notation: EA = (A)
• Advantage: Increased address

space.
• Disadvantage: Multiple

memory references needed.

7.2.4 Register

• Notation: EA = R
• Similar to direct addressing, but

the operand is in a register.
• Advantage: Fast access to

operands.
• Disadvantage: Limited number

of registers. (e.g. 32 registers in
MIPS)

7.2.5 Register Indirect

• Notation: EA = (R)
• Similar to indirect addressing,

but the operand is in a register.
• Advantage & Disadvantage:

Same as indirect addressing.

7.2.6 Displacement

• Notation: EA = A + (R)
• Usage: Accessing local variables

or parameters in a function call,
or accessing an array.

• Registers involved: PC, SP, and
base pointer register.

• Advantage: Flexible.
• Disadvantage: Complex.
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7.2.7 Stack

• Notation: EA = Top of Stack
• Uses the stack pointer register (SP). This is implied in the instruction.
• Usage: Mainly for PUSH and POP instructions.
• Advantage: No memory reference.
• Disadvantage: Limited applicability.

7.3 Assembly Language Programming
Remark. Assembly Language is very instruction set architecture (ISA) dependent. The language differs from one
architecture to another. This course focuses on a hypothetical machine, with the following features:

• Comments start with a #5and continue to the end of the line;
• Destination operands are on the right of the operands list;
• Instructions are case insensitive;

7.3.1 Syntax

Definition 7.1 (Assembly Language Syntax). Each line of assembly language consists of:

LABEL: OPERATION_MNEMONIC OPERAND_1, OPERAND_2, ..., OPERAND_N ; COMMENT

• LABEL: optional, used to identify a location in the program;
• OPERATION_MNEMONIC: the operation to be performed;
• OPERAND_1, OPERAND_2, ..., OPERAND_N: the operands for the operation;
• COMMENT: optional, used to explain the purpose of the instruction.

7.3.2 Assembler Directives

Like compiler directives in C/C++, assembly language also has assembler directives. Assembler directives are for the
assembler to perform an action or change a setting, they are not translated into machine code. Assembler directives start
with a dot.

Assembler Directive Description
.DATA Adds the subsequent data to the data segment.
.TEXT Adds the subsequent code to the text (program) segment.
.GLOBAL NAME Makes NAME available to external files.
.SPACE EXPRESSION Reserves spaces with the amount specified by the value of EXPRESSION in

bytes. Reserved space is filled with 0’s.
.WORD VALUE_1[, VALUE_2, ...] Puts the values in successive memory locations.

7.3.3 Flow Control

1. IF...THEN...ELSE... structure

Example. The following C/C++ code:

if (a[0] > a[1]) x = a[0];
else x = a[1];

is equivalent to the following assembly code:

.DATA ; declares the data segment
a: .WORD 1 ; a[0] = 1

.WORD 3 ; a[1] = 3
x: .WORD 4 ; x = 4

.TEXT ; declares the program segment
main:

LD [a], R8 ; load address of a into R8
LD 0(R8), R9 ; load a[0] into R9 (displacement addressing)
LD 4(R8), R10 ; load a[1] into R10 (displacement addressing)
BGT R9, R10, f1 ; if a[0] > a[1], branch to f1
ST R10, x ; else: x = a[1]

5For using LATEX’s minted package for syntex highlighting, the comment character in these notes will be “;”.
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BR f2
f1: ST R9, x ; x = a[0]
f2: RET ; return to the caller

2. FOR loop

Example. The following C/C++ code:

a = 0;
for (i = 0; i < 10; i++) a += i;

is equivalent to the following assembly code:

.DATA ; declares the data segment
a: .WORD 0

.TEXT
main:

SUB R8, R8, R8 ; prepare R8 = 0 as the counter
LD 0xa, R9 ; constant 10 in R9 (hexadecimal)
LD 0x1, R10 ; constant 1 in R10 for incrementing R8
SUB R11, R11, R11 ; use R11 as sum

L: ADD R11, R8, R11 ; R11 += R8
ADD R8, R10, R8 ; R8++
BGT R9, R8, L ; branch to L if R9 (10) > R8 (counter)
ST R11, [a]
RET

3. WHILE loop – very similar to FOR loops.
4. Function calls

Use CALL to make a function call, and RET to return from the function. Input/return parameters are passed in
registers and need to be documented by the developer. If the function modifies some other registers, either document
this behaviour, or use PUSH and POP to save and restore the registers before and after the function.

Example. The following assembly code shows how to call a function c_mult that multiplies two complex
numbers. (Re(a · b) = Re(a) · Re(b)− Im(a) · Im(b) and Im(a · b) = Re(a) · Im(b) + Im(a) · Re(b))

.DATA
ar: .WORD 1 ; Re(a) = 1 (real part of complex number a)
ai: .WORD 5 ; Im(a) = 5 (imaginary part of complex number a)
br: .WORD 2
bi: .WORD 3
cr: .WORD 0
ci: .WORD 0

.TEXT
main:

LD [ar], R8 ; Prepare parameters for c_mult
LD [ai], R9
LD [br], R10
LD [bi], R11
CALL c_mult ; Call c_mult
ST R12, [cr] ; Store the result
ST R13, [ci]
RET

c_mult:
; multiply two complex numbers
; input: R8 = Re(a), R9 = Im(a), R10 = Re(b), R11 = Im(b)
; output: R12 = Re(a*b), R13 = Im(a*b)
PUSH R14 ; use R14 as a temporary register
MUL R8, R10, R12
MUL R9, R11, R14
SUB R12, R14, R12
MUL R8, R11, R13
MUL R9, R10, R14
ADD R13, R14, R13
POP R14
RET
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7.4 Operating System Support
The operating system (OS) is a software that controls the execution of programs and manages hardware resources. It

allows a computer to be used efficiently and conveniently.
Services provided by the OS:

• Program Creation – through compilers, assemblers, editors, debuggers etc.
• Program Execution – through loading programs into memory and preparing resources for the program
• I/O Access – through providing a uniform I/O interface while the implementation is left to the OS
• File System Management
• System Access – control access to system resources to prevent unauthorised users
• Error Detection and Response
• Accounting – collecting usage statistics and monitoring performance parameters

7.4.1 OS Protection Scheme

Most OSs uses two modes of operation: user mode and kernel mode. The CPU will execute in different modes to
facilitate protection. Some OSs may use up to four modes. Some resources are only accessible in kernel mode.

An OS is supposed to be well-tested, while bugs may exist in user programs.
OS functions are usually accessed via special entry points called system calls. Upon a system call, the CPU will

switch from user mode to kernel mode.

7.4.2 Multitasking, Time Sharing & Process Scheduling

To fully utilise the CPU, the CPU is shared among multiple processes. Each process is given a time slice to execute.
When it uses up its time slice, the CPU will suspend the execution and switch to another process.

The OS maintains a queue of processes in which the order of execution depends on several factors, such as priority,
waiting time, whether the process has used up its time slice (i.e. CPU-bound jobs), the current system load, etc.

7.5 Processor Organisation
The processor executes instructions via moving data to the desired location and performing data transformations/processing

using the ALU. These operations are controlled by the control signals generated by the control unit (CU).

7.5.1 Data Movement and Transformation

Recall the stages of an instruction execution cycle at Section 4.2: (1) IF, (2) ID, (3) CO, (4) OF, (5) EI, (6) WO.
For modern processors, only LD and ST instructions are related to memory operands and they do not need the EI stage.
Other instructions usually do not need the CO stage.

Example. Suppose the instruction ADD A, B, C uses direct addressing mode, and A, B, and C are supplied in the
words following the instruction. Write down the involved data movement.

; IF - Instruction Fetch
MAR ← PC
PC ← PC + 4 ; PC now points to A
IR ← mem[MAR]
; ID - Instruction Decode
; CO(A) - Calculate Operand (A)
MAR ← PC ; MAR has address to address of A
PC ← PC + 4 ; PC now points to B
MBR ← mem[MAR] ; MBR has the address of A
; FO(A) - Fetch Operand (A)
MAR ← MBR ; MAR has the address of A
MBR ← mem[MAR] ; MBR has the value of A
ALU_IN_1 ← MBR ; ALU_IN_1 has the value of A
; CO(B) - Calculate Operand (B)
MAR ← PC ; MAR has address to address of B

PC ← PC + 4 ; PC now points to C
MBR ← mem[MAR] ; MBR has the address of B
; FO(B) - Fetch Operand (B)
MAR ← MBR ; MAR has the address of B
MBR ← mem[MAR] ; MBR has the value of B
ALU_IN_2 ← MBR ; ALU_IN_2 has the value of B
; EI - Execute Instruction
ALU_OUT ALU←−− ALU_IN_1 + ALU_IN_2
; WO - Write Operand
MAR ← PC ; MAR has address to address of C
PC ← PC + 4 ; PC points to next instruction
MBR ← mem[MAR] ; MBR has the address of C
MAR ← MBR ; MAR has the address of C
MBR ← ALU_OUT ; MBR has the value of A + B
mem[MAR] ← MBR ; Writes the result to C

7.5.2 Instruction Pipeline

Main purpose: to increase the throughput of instruction execution.
Suppose an instruction has 5 stages, and each stage takes exactly 1 clock cycle to execute, then, an ideal pipeline will
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finish executing n instructions in (5 + n−1) clock cycles, as shown in Figure 15, as opposed to 5n clock cycles if executed
sequentially.

Figure 15: Ideal 5-stage Pipeline Time Diagram

However, in practice, this pipelining strategy will cause problems, such as when I2 operates on data produced by I1,
but the IF stage already took place before WO of I1 is performed, incorrect data will arise. These problems are called
pipeline hazards.

Pipeline hazards can be classified into three categories:

1. Resource Hazard (or structural hazard): e.g. when PC increment and an ALU operation happen at the same
time, the ALU (the hardware resource) will be in conflict.
Solution: Add more resources. E.g. a dedicated incrementer for the PC, separate data/instruction caches (split
cache), etc.

2. Data Hazard: instruction waiting for the result from previous instructions due to data dependency. Three types
of data hazards:
(a) Read After Write (RAW): I1 writes to a register, and I2 reads from the same register. Occurs if the read

happens before the write is done.
(b) Write After Read (WAR): I1 reads from a register, and I2 writes to the same register. Occurs if the write

happens before the read is done.
(c) Write After Write (WAW): I1 and I2 write to the same register. Occurs if the second write happens before

the first write is done.
Note that only RAW occurs in pipeline (refer to Figure 15). The others occur in parallel systems.
Solutions:

• Stalling: wait until the dependent instruction is done. This will put the processor in idle, which wastes time.
• Rearrange Instructions: rearrange the instructions so that the instruction that depends on the result of

the previous instruction is only executed after the previous instruction is done. This is not always possible.
• Data Forwarding: (a hardware solution) by forwarding the result from ALU_out to ALU_in when the next

instruction is executed.
3. Control Hazard: occurs when the IF stage of the next instruction cannot start until the previous branch is

resolved.
Solution: Unsolvable. The CPU must either wait, or guess the branch target by branch prediction. Two types
of branch prediction:
(a) Static Prediction: always predict the same branch target. E.g. always predict the branch will be taken, or

will not be taken. 50% correct on average, in some cases like for loops, higher accuracy since most of the
time the branch will be taken. Potential problem: when the branch target is on a different page, the branch
penalty will be higher to involve the time taken to resolve the page fault.

(b) Dynamic Prediction:
• 1-bit Prediction: use a single bit for prediction strategy. If the prediction is correct, keep predicting the

same. If the prediction is wrong, change the prediction. Problem: at the end of a for loop, the prediction
must be wrong, if another for loop follows, the prediction will be wrong again.

• 2-bit Prediction: requires two consecutive wrong predictions to change the prediction.

7.6 Reduced Instruction Set Computer (RISC) Architecture
Characteristics of RISC architecture:

• Load/Store Architecture: all instructions are register-to-register, with the only exceptions being LD and ST
instructions, which access memory.

• Fixed-length and Simple, Fixed-format Instructions: all instructions are of the same length, and have the
same format. OF can always be done directly since the operands are always in the same place. (⇒ high clock rate,
low clock cycle time)
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• Fewer Addressing Modes: allows simple CPU and faster clock rate. Pipeline is easier to implement since there
are less cases to consider (⇒ low CPI).

• More Instructions: due to the fixed-length and simple instructions, more instructions are needed to perform the
same task. However, empirical study shows that the increase in instruction count does not significantly affect the
performance. (e.g. increase in instruction count by 20% ⇒ CPI reduced by 2 to 4 times)

• Extensive Software and Hardware Pipelining: use instruction-level parallelism and extensive software and
hardware techniques to eliminate pipeline hazards.

• Compiler Optimisation: relies on the compiler to optimise the code.

Remark. The RISC characteristics can be applied to any processor design, not just RISC. The RISC is a design
philosophy rather than a specific architecture. Some hybrid designs feature both RISC and CISC6design principles.

6Complex Instruction Set Computer
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