1 Evolution of Computers
Computer Performance

Clock speed (f): cycles per second,
measured in Hz.

Average CPI: Z;&

Process Time (T): (i fXCPI

./
MIPS: &hixioe

2 Digital Logic
Boolean Algebra
A®B=AB+AB
A®B=AB+AB
Algebra Laws
A+0=A A Identity Elements
Null Law
Idempotent Law
Inverse
Associative (1)

b
+
S
Il
b
D>:>3>

A+A=1
(A+B)+C:A+(B+C)

(A-B)-C=A-(B-C) (2)
A-(B+C)=A-B+A-C Distributive (1)
A+(B-C)=(A+B)-(A+C) (2)

De Morgan’s Theorem

A+B+---+N=A-B----- N
Logic Gates
AND OR NOT

NAND NOR XOR
Functional Complete Set
Any boolean function can be
implemented by the set.
{AND, OR, NOT} {NAND} {NOR}
{AND, NOT} {OR, NOT}

Implementing Functions

SOP: (1) write 1’s as minterms (products
of variables), (2) sum minterms.

POS: (1) write 1’s as product terms of
variables, (2) apply NOT to each term,
(3) apply De Morgan’s, (4) connect terms
with AND.

Karnaugh Map: (1) write map,
rows/columns differ by only 1 bit,

(2) circle 1’s as large, in powers of 2,
rectangular, wrap if needed (3) each
group is a product, sum groups.

Adders

Half Adder: S=A®B C=A-B
FullAdder: S =A®Ba& Cj,

Cout =A-B+Cip-(A®B)

3 Number Representation
Positional Number System

Y ilairh) Direct (O(n?))
r(r(ag+ay_1)+---)+ag Iterative (O(n))

Binary Integers

uint: Z::& 2ig;

Sign-Mag: (—1)%-1 Y 12214

1’s Comp: (if < 0) bit-wise NOT

2’s Comp: (if <0) 1’s Comp + 1

—onl oy y 20

It;/'ISB of 1’s Comp and 2’s Comp is sign
it.

Binary Integer Arithmetics

Negation of 2’s Comp

Take 2’s Comp of the 2’s Comp.

Add/Sub of 2’s Comp

Add/Sub directly.

Overflow: Two numbers of same sign

added to get oppposite sign.

Multiplication (multiplicand x multiplier)

+vex+ve: (1) for each multiplier bit,

(2) if 1, shift multiplicand left, add to

partial sum, (3) if 0, do nothing,

(4) return sum. Other cases: (1) for each

non- 31%n multiplier bit, (2) if 1, shift

multiplicand left, add to partial sum,

(3)if O do nothing, (4) for 31§n bit, if 1,

negate multiplicand, left shift, sign

extend, add to partial sum, (5) return

sum.

Excess-K

Values range: [0-K,2" -1 -K]

K is typically chosen to be 2"~ — 1.

Floating Point Numbers

+Significand x p*(Biased) Exponent
Single: 32 bits, 8 exp, 23 sig.

Double: 64 bits, 11 exp, 52 sig.
Extended: 80 bits, 15 exp, 112 sig.
Special Values (used only when specified)
0: exp = 0, sig = 0.

Subnormalized: exp = 0, sig = 0.

oco: exp =all 1, sig = 0.

NaN: exp = all 1, sig = 0.

Properties

of representable numbers same as int.
Not uniformly distributed.
Arithmetic laws not always hold.
Floating Point Arithmetics

Add/Sub

(1) Check 0. (2) Align significand
(smaller exp shift right). (3) Add/Sub
significands. (4) Normalise. (5) Round.
Multiplication/Division

(1) Check 0. (2) Multiply/Divide
significands. (3) Multiplication: add
exponents, sub K; Division: sub
exponents, add K. (4) Determine sign.
(5) Normalise. (6) Round.

Rounding Methods

Round to nearest even.

Round towards zero.

Round towards +co.

4 Instruction Execution Cycle

(1) Instruction address calculation;

(2) Instruction fetch; (3) Instruction
decode; (4) Operand address calculation;
(5) Operand fetch (one or more); (6) Data
operation; (7) Operand address
calculation; (8) Operand store;

(9) Interrupt check.

Operation Format

One word: [opcode, srcl, src2,
dest] (register)

Two word: [opcode, src, address
model, dest], [address (mem)]
Instruction Fetch

(1) MAR « PC; (2) PC « PC + 1;

(3) MDR « Mem[MAR]; PC increment
is implied, will change if branch.
Operand Fetch

Operands in registers: ALU < Reg
Operands in memory: (1) MAR « MBR;
(2) MBR « Mem|[MAR];

Interrupt Handling

Reasons: (1) Improve efficiency;

(2) Prevent data loss (e.g. from network);
(3) Other programs need to run (e.g.
time-sharing).

Information saved: (1) PC; (2) Modified
registers; (3) Flags; (4) Current
instruction address.

5 Memory

Memory Hierarchy: Inbound (Registers,
on-chip cache, cache, main mem) —
Outbound (disk, SSD, DVD) — Off-line
(magnetic tape)

Trends (top to bottom): Capacity T; Cost
per bit |; Access time T; Frequency of
access |.

Principle of Locality: Temporal (recently
accessed likely to be accessed again, e.g.
sum) and Spatial (items with nearby
addresses likely to be accessed soon, e.g.
arr[]).

Memory Organisation: Big Endian
(left-to-right) and Little Endian
(right-to-left).

Access Modes: Sequential, Random,
Associative.

Internal Memory

ROM: Read-only; Non-volatile; Written
by masks; No erasure.

PROM: Read-only; Non-volatile; Written
electrically; No erasure.

EPROM: Read-mostly; Non-volatile;
Written electrically; Erased by UV light.
EEPROM: Read-mostly; Non-volatile;
Written electrically; Erased electrically
(byte-wise).

Flash: Read-mostly; Non-volatile;
Written electrically; Erased electrically
(block-wise); limited write cycles.
DRAM: Read-write; Volatile; Use
transistors; Refresh needed; Slow;

Cheaper.

SRAM: Read-write; Volatile; Use logic
gates; No refresh; Fast Expensive.
Bench-marking Memory Performance
Access Time: Time to read/write data.
Bandwidth/Transfer Rate: Rate at which
data can be read/written.

Memory Cycle Time: Access time +
Transfer time.

Cache Memory

A unit-addressable main memory with

n-bit addresses, a block size of 2k units,
has M = 2% blocks. The cache has m
blocks (lines), m < M.

Address Mapping

Direct Mapping: 1-to-1 mapping.
(Cache line) = (Main mem block) % 1.
Fields: Tag (remaining bits), Line (r bits,
corresponds to 2" lines), Offset (k bits,
corresponds to line size 2k addressable
units)

Pros: (1) Simple circuitry. (2) Fast.
Cons: (1) High miss rate.

Fully Associative: 1-to-all mapping.
Fields: Tag (remaining bits), Offset (k
bits, corresponds to line size 2
addressable units)

Pros: (1) Low miss rate. (2) Flexible use
of cache.

Cons: (1) Need to search all lines.

(2) Complex circuitry.

Set Associative: 1-to-some mapping.

m (# of lines) = v sets x k lines/set.

i(Set #) = j (Main mem block) %v.
Implementation: (1) v associative
caches. (high associativity) (2) k direct
cache. (k-way set associative, low
associativity)

Fields: Tag (remaining bits), Set (s bits,
corresponds to v = 2° sets), Offset (k bits,
corresponds to line size 2K addressable
units)

Pros: (1) Low miss rate.

Cons: (1) Complex circuitry.
Replacement Algorithms

Random: Randomly choose a line to

replace. (Not used)

FIFO: Replace the line that has been in
the cache the longest.

LRU: Replace the line that has been least
recently used.

LFU: Replace the line that has been least
frequently used.

Not applicable to direct mapping.

Write Policies

Write-through: Write every time cache is
changed.

Write-back: Write only when line is
replaced.

Performance

Average Access Time

= Hit time + Miss rate x Miss penalty.
Unified/Split Cache

Unified: Instructions and data share the
same cache. Auto balanced. Memor
contention problem on pipeline an(f’
parallel executions, causes bottoleneck.
Split: Instructions and data have
fixed-size separate caches. Better
performance. Main trend.

Virtual Memory

Physical vs Logical Address: Physical for
addressing actual memory, space
smaller; logical visible to the program,
space may be larger.

Memory Management Unit (MMU): Maps
between logical and physical addresses.
Paging

Page vs Frame: Page is a fixed-size block
of logical memory, frame is a fixed-size
block of physical memory.

Demand Paging: Pages are loaded into
memory only when needed.

Page Fault: Occurs when a page is not in
memory.

Pros: fast response; less memory usage;
Cons: page faults until stable set of
pages loaded.

Page Table: One page table per process,
maps logical pages to physical frames.
PTE: (VPDF) — Valid bit (whether page
in memory), Protection bits (manages
access rights), Dirty bit (whether page
modified), Frame number (physical
frame #).

Translation Lookaside Buffer (TLB): Like
a cache, stores some valid PTEs. TLB
consulted first, if not found, page table
is consulted.

External Memory

Hard Disk Drive (HDD)

Components: Platter (disk), Track
(concentric circle), Sector (segment of
track, 512 bytes), Cylinder (set of same
tracks vertically).

Sector Format: e.g. Gap 1 (separate
sectors) - ID Field (synch, track, head,
sector #, CRC) - Gap 2 (separate ID &
data) - Data Field (data, CRC) - Gap 3
Disk Layout Methods: (1) Constant
Angular Velocity - easy read/write,
density decreases towards the rim,
wastes space; (2) Multiple Zone
Recording - zones with different # of
sectors, maximise storage capacity,
density similar but NOT uniform

Data Access Time: (1) Seek time - move
read/write head to cylinder, distance
dependent, 5 - 15 ms startup, 0.2 - 1 ms
consecutive; (2) Rotational latency -
average is half a revolution; (3) Transfer
time - 7 < seek + latency

b= bytes to transfer 1
T= bytes per track " rotation speed (rps)
Redundant Array of Independent Disks (RAID)
0 (non-redundant): data stored in
round-robin fashion, efficient for
accessing one block of data, no failure
tolerance.
1 (mirroring): multi-disk failure
tolerance, either copy can be used —
reduce seek time, 1 logical write = 2
physical writes.
2 (hamming code): not used, expensive,
redundant disks ~ log, (# data disks),
efficient for parallel with small strip size,
universally controlled spindles.
3 (bit-interleaved parity): 1 disk for
parity, can recover from 1 disk failure
gP = blost ® by ® b3 © biost = by ®b3 @),
ast read/write, low ECC:Data ratio.
4 (block-level parity): not used, write
penalty = 2 reads + 2 writes, methods for
writing: (1) write data, recalculate parity,
write parity; (2) write data, compare old
data with new data, add difference to
parity;, individual spindle control, fast
read, slow write, low ECC:Data.
5 (block-level distributed parity): 1 disk
for parity, parity distributed across all
disks, can endure 1 disk failure,
common for Network Attached Storage,
fastest read/write, low ECC:Data
6 (dual redundancy): 2 disks for parity,
can endure 2 disk failures, use two
different parity methods, distributed
across all disks.
6 Input & Output
1/0 Module: interface between processor
and memory via system bus or central
switch; interface to peripheral devices
through dedicated data links.
Model Requirements: (1) asynchronous
timing (2) command decoding (e.g. SEEK)
(3) data exchange (4) status reporting
(e.g. ready, busy, etc.) (5) address
recognition (6) data buffering (speed up
transactions) (7) error detection &
correction
1/O Register Mapping
Memory-mapped: registers mapped into
main memory address space; accessed as
if memory locations;
1/0-mapped: mapped into separate
address space; accessed via special
instructions.
1/0 Techniques
Programmed I/O: Not using interrupts.
CPU waits for I/O device to complete
operation. CPU accesses device via
Control and Status Registers (CSR).
Wastes CPU time.
Interrupt-driven 1/0:
(Memory <> CPU < I/0) CPU executes
other instructions after sending I/O
command. I/O interrupts CPU when
complete. CPU sends acknowledgment

(INTA) to I/O. Interruptions handled
between instruction cycles.

Direct Memory Access (DMA):

(Memory < 1/0) Use Input-Output
Processor (IOP). IOP steals cycles from
CPU. CPU sees elongated cycle and wait
until cycle is over. Interruptions
handled within one instruction cycle.

7 Instruction Sets

Arithmetic Operations: treat operands as
numbers; consider signs; (e.g. arithmetic
shift = multiplication/division by 2, sign
bit preserved).

Logical Operations: treat operands as bit
patterns; discard bits shifted out;
replenish new bits with 0.

Rotate Operations: put bits shifted out
back into the other end of the number;
are logical operations.

Instruction Operands

Op# Symbolic Interpretation
3 OP A, B, C A<B OP C
2 OP A, B A<A OP B
1 OP A AC—AC OP A
0 opP Te—(T-1) OP T
Registers

General Purpose Registers: can be used
for whatever reason

Dedicated Purpose Registers: have a
specific purpose (e.g. PC, IR, SP,
processor status word - PSW, flag)

Data Types

Basic Data Types

Typical lengths: 8, 16, 32, 64 bits
Numeric: integer, floating point;
Non-numeric: character, binary data;
MIPS Architecture

(family of RISC, not ARM nor x86)

9 basic types: (1) (un)/signed bytes;

(2) (un)/signed half-words;

(3) (un)/signed words; (4) double-words;
(5) single-precision floating point (32
bits); (6) double-precision floating point
(64 bits);

ARM Architecture

Supported lengths: (1) byte (8 bits);

(2) half-word (16 bits); (3) word (32 bits);
Only unsigned integers, nonnegative
integers, and 2’s comp integers.

No floating point by hardware, must be
emulated.

Addressing Modes

Immediate (OP = A): operand is value;
Pros: no memory reference; Cons: small
operand magnitude

Direct (EA = A): operand is address;
Pros: fast & increased magnitude; Cons:
limited address space

Indirect (EA = (A)): operand is address
of address; Pros: large address space;
Cons: multiple memory references
Register (EA = R): operand points to
register; Pros: fast; Cons: limited # of

registers (e.g. 32 in MIPS)

Register Indirect (EA = (R)): operand
points to register, register has address;
Pros & Cons: same as indirect
Displacement (EA = A + (R)): address
is base address + offset; Pros: flexible;
Cons: complex; Usage: local vars, arrays;
Registers: PC, SP, base pointer register
Stack (EA = Top of Stack): implicit;
Pros: no memory references; Cons:
limited applicability; Usage: PUSH and
POP; Register: SP

Assembly Language
Syntax
[LABEL:] OP_NAME [OP_1, OP_2,
.1 [# COMMENT]
Assembler Directives
.data data segment
.text program segment

introduce to other files
reserve space with 0
write to memory

.global NAME
.reserve EXPR
.word VAL1[, ...]
OS Support

0S Services: (1) Program creation
(compilers), execution (loading,
managing resources), (2) I/O access
(provide uniform interface,
implementation hidden), (3) File system
management, (4) System access
(user/kernel mode), (5) Error detection
& response (BSOD), (6) Accounting
(collect usage stats)

System Calls: special entry points to
execute OS functions via kernel model
(executed by OS on behalf of user
program)

Scheduling & Time Sharing: CPU time
divided into time slices, each process
gets a slice, when used up, process is
suspended and another process is
scheduled. OS maintains a priority
queue, depends on waiting time, system
load, CPU-bound etc.

Processor Pipelining

Ideal throughput = 1 CPL

Pipeline Hazards

Resource: multiple instructions need the
same resource (PC, ALU, registers).
Solution: add more resources

Data: instruction depends on result of
previous instruction — (1) RAW: occurs if
read happens before write when it
should be RAW; (2) WAR: opposite of
RAW, not occurs in pipeline but in
parallel systems; (3) WAW: occurs if 2nd
write happens before 1st, not in pipeline
but in parallel systems. Solutions:

(1) Stalling: wait; (2) Data forwarding:
use result of previous instruction;

(3) Rearrange instructions: separate
dependent instructions, not always
possible;

Control: branch not resolved.
Unsolvable. Mitigated by branch

prediction.

Branch Prediction

Static: always predict taken/not taken.
Pros: simple, 50% accurac}il, higher in
for loops. Cons: possible high page
faults.

Dynamic: Use history to help predict.
(1) 1-bit: If wrong prediction, predict
opposite; Problem: high misprediction
rate at the end of loops; (2) 2-bit: If two
consecutive wrong predictions, predict
opposite.

RISC Architecture

Characteristics: (1) Load/store
architecture: only load/store
instructions access memory;

(2) Fixed-length, simple, fixed-format
instructions = high clock rate, low clock
cycle time; (3) Fewer addressing modes
= low CPI; (4) More instructions
(reduction in CPI is more significant
than increase in instruction count);

(5) Extensive soft/hardware pipelining;
(6) Relies on compiler optimisation.

