
1 Evolution of Computers
Computer Performance
Clock speed (f): cycles per second,
measured in Hz.
Average CPI:

∑
i CPIi×Ii∑

i Ii

Process Time (T): (
∑

i Ii)×CP I
f

MIPS: f
CPI×106

2 Digital Logic
Boolean Algebra
A⊕B = AB+AB
A⊕B = AB+AB
Algebra Laws
A+ 0 = A A · 1 = A Identity Elements
A+ 1 = 1 A · 0 = 0 Null Law
A+A = A A ·A = A Idempotent Law
A+A = 1 A ·A = 0 Inverse
(A+B) +C = A+ (B+C) Associative (1)
(A ·B) ·C = A · (B ·C) (2)
A · (B+C) = A ·B+A ·C Distributive (1)
A+ (B ·C) = (A+B) · (A+C) (2)
De Morgan’s Theorem
A ·B · · · · ·N = A+B+ · · ·+N
A+B+ · · ·+N = A ·B · · · · ·N
Logic Gates

AND OR NOT

NAND NOR XOR

Functional Complete Set
Any boolean function can be
implemented by the set.
{AND, OR, NOT} {NAND} {NOR}
{AND, NOT} {OR, NOT}
Implementing Functions
SOP: (1) write 1’s as minterms (products
of variables), (2) sum minterms.
POS: (1) write 1’s as product terms of
variables, (2) apply NOT to each term,
(3) apply De Morgan’s, (4) connect terms
with AND.
Karnaugh Map: (1) write map,
rows/columns differ by only 1 bit,
(2) circle 1’s as large, in powers of 2,
rectangular, wrap if needed (3) each
group is a product, sum groups.
Adders
Half Adder: S = A⊕B C = A ·B
Full Adder: S = A⊕B⊕Cin
Cout = A ·B+Cin · (A⊕B)
3 Number Representation
Positional Number System∑

i (air
i) Direct (O(n2))

r(r(an + an−1) + · · ·) + a0 Iterative (O(n))

Binary Integers
uint:

∑n−1
i=0 2iai

Sign-Mag: (−1)an−1
∑n−2

i=0 2iai
1’s Comp: (if < 0) bit-wise NOT
2’s Comp: (if < 0) 1’s Comp + 1
−2n−1 +

∑n−2
i=0 2iai

MSB of 1’s Comp and 2’s Comp is sign
bit.
Binary Integer Arithmetics
Negation of 2’s Comp
Take 2’s Comp of the 2’s Comp.
Add/Sub of 2’s Comp
Add/Sub directly.
Overflow: Two numbers of same sign
added to get oppposite sign.
Multiplication (multiplicand ×multiplier)
+ve×+ve: (1) for each multiplier bit,
(2) if 1, shift multiplicand left, add to
partial sum, (3) if 0, do nothing,
(4) return sum. Other cases: (1) for each
non-sign multiplier bit, (2) if 1, shift
multiplicand left, add to partial sum,
(3) if 0, do nothing, (4) for sign bit, if 1,
negate multiplicand, left shift, sign
extend, add to partial sum, (5) return
sum.
Excess-K
Values range: [0−K,2n − 1−K]
K is typically chosen to be 2n−1 − 1.
Floating Point Numbers
±Significand× 2±(Biased) Exponent

Single: 32 bits, 8 exp, 23 sig.
Double: 64 bits, 11 exp, 52 sig.
Extended: 80 bits, 15 exp, 112 sig.
Special Values (used only when specified)
0: exp = 0, sig = 0.
Subnormalized: exp = 0, sig , 0.
∞: exp = all 1, sig = 0.
NaN: exp = all 1, sig , 0.
Properties
of representable numbers same as int.
Not uniformly distributed.
Arithmetic laws not always hold.
Floating Point Arithmetics
Add/Sub
(1) Check 0. (2) Align significand
(smaller exp shift right). (3) Add/Sub
significands. (4) Normalise. (5) Round.
Multiplication/Division
(1) Check 0. (2) Multiply/Divide
significands. (3) Multiplication: add
exponents, sub K ; Division: sub
exponents, add K . (4) Determine sign.
(5) Normalise. (6) Round.
Rounding Methods
Round to nearest even.
Round towards zero.
Round towards ±∞.

4 Instruction Execution Cycle
(1) Instruction address calculation;
(2) Instruction fetch; (3) Instruction
decode; (4) Operand address calculation;
(5) Operand fetch (one or more); (6) Data
operation; (7) Operand address
calculation; (8) Operand store;
(9) Interrupt check.
Operation Format
One word: [opcode, src1, src2,

dest] (register)

Two word: [opcode, src, address

model, dest], [address (mem)]

Instruction Fetch
(1) MAR← PC; (2) PC← PC + 1;
(3) MDR←Mem[MAR]; PC increment
is implied, will change if branch.
Operand Fetch
Operands in registers: ALU← Reg
Operands in memory: (1) MAR←MBR;
(2) MBR←Mem[MAR];
Interrupt Handling
Reasons: (1) Improve efficiency;
(2) Prevent data loss (e.g. from network);
(3) Other programs need to run (e.g.
time-sharing).
Information saved: (1) PC; (2) Modified
registers; (3) Flags; (4) Current
instruction address.
5 Memory
Memory Hierarchy: Inbound (Registers,
on-chip cache, cache, main mem)→
Outbound (disk, SSD, DVD)→ Off-line
(magnetic tape)
Trends (top to bottom): Capacity ↑; Cost
per bit ↓; Access time ↑; Frequency of
access ↓.
Principle of Locality: Temporal (recently
accessed likely to be accessed again, e.g.
sum) and Spatial (items with nearby
addresses likely to be accessed soon, e.g.
arr[]).
Memory Organisation: Big Endian
(left-to-right) and Little Endian
(right-to-left).
Access Modes: Sequential, Random,
Associative.
Internal Memory
ROM: Read-only; Non-volatile; Written
by masks; No erasure.
PROM: Read-only; Non-volatile; Written
electrically; No erasure.
EPROM: Read-mostly; Non-volatile;
Written electrically; Erased by UV light.
EEPROM: Read-mostly; Non-volatile;
Written electrically; Erased electrically
(byte-wise).
Flash: Read-mostly; Non-volatile;
Written electrically; Erased electrically
(block-wise); limited write cycles.
DRAM: Read-write; Volatile; Use
transistors; Refresh needed; Slow;

Cheaper.
SRAM: Read-write; Volatile; Use logic
gates; No refresh; Fast; Expensive.
Bench-marking Memory Performance
Access Time: Time to read/write data.
Bandwidth/Transfer Rate: Rate at which
data can be read/written.
Memory Cycle Time: Access time +
Transfer time.
Cache Memory
A unit-addressable main memory with
n-bit addresses, a block size of 2k units,
has M = 2n−k blocks. The cache has m
blocks (lines), m≪M.
Address Mapping
Direct Mapping: 1-to-1 mapping.
(Cache line) = (Main mem block)%m.
Fields: Tag (remaining bits), Line (r bits,
corresponds to 2r lines), Offset (k bits,
corresponds to line size 2k addressable
units)
Pros: (1) Simple circuitry. (2) Fast.
Cons: (1) High miss rate.
Fully Associative: 1-to-all mapping.
Fields: Tag (remaining bits), Offset (k
bits, corresponds to line size 2k
addressable units)
Pros: (1) Low miss rate. (2) Flexible use
of cache.
Cons: (1) Need to search all lines.
(2) Complex circuitry.
Set Associative: 1-to-some mapping.
m (# of lines) = v sets× k lines/set.
i (Set #) = j (Main mem block)%v.
Implementation: (1) v associative
caches. (high associativity) (2) k direct
cache. (k-way set associative, low
associativity)
Fields: Tag (remaining bits), Set (s bits,
corresponds to v = 2s sets), Offset (k bits,
corresponds to line size 2k addressable
units)
Pros: (1) Low miss rate.
Cons: (1) Complex circuitry.
Replacement Algorithms
Random: Randomly choose a line to
replace. (Not used)
FIFO: Replace the line that has been in
the cache the longest.
LRU: Replace the line that has been least
recently used.
LFU: Replace the line that has been least
frequently used.
Not applicable to direct mapping.
Write Policies
Write-through: Write every time cache is
changed.
Write-back: Write only when line is
replaced.

Performance
Average Access Time
= Hit time + Miss rate×Miss penalty.
Unified/Split Cache
Unified: Instructions and data share the
same cache. Auto balanced. Memory
contention problem on pipeline and
parallel executions, causes bottoleneck.
Split: Instructions and data have
fixed-size separate caches. Better
performance. Main trend.
Virtual Memory
Physical vs Logical Address: Physical for
addressing actual memory, space
smaller; logical visible to the program,
space may be larger.
Memory Management Unit (MMU): Maps
between logical and physical addresses.
Paging
Page vs Frame: Page is a fixed-size block
of logical memory, frame is a fixed-size
block of physical memory.
Demand Paging: Pages are loaded into
memory only when needed.
Page Fault: Occurs when a page is not in
memory.
Pros: fast response; less memory usage;
Cons: page faults until stable set of
pages loaded.
Page Table: One page table per process,
maps logical pages to physical frames.
PTE: (VPDF) – Valid bit (whether page
in memory), Protection bits (manages
access rights), Dirty bit (whether page
modified), Frame number (physical
frame #).
Translation Lookaside Buffer (TLB): Like
a cache, stores some valid PTEs. TLB
consulted first, if not found, page table
is consulted.
External Memory
Hard Disk Drive (HDD)
Components: Platter (disk), Track
(concentric circle), Sector (segment of
track, 512 bytes), Cylinder (set of same
tracks vertically).
Sector Format: e.g. Gap 1 (separate
sectors) - ID Field (synch, track, head,
sector #, CRC) - Gap 2 (separate ID &
data) - Data Field (data, CRC) - Gap 3
Disk Layout Methods: (1) Constant
Angular Velocity - easy read/write,
density decreases towards the rim,
wastes space; (2) Multiple Zone
Recording - zones with different # of
sectors, maximise storage capacity,
density similar but NOT uniform
Data Access Time: (1) Seek time - move
read/write head to cylinder, distance
dependent, 5 - 15 ms startup, 0.2 - 1 ms
consecutive; (2) Rotational latency -
average is half a revolution; (3) Transfer
time - tT ≪ seek + latency

tT = bytes to transfer
bytes per track ×

1
rotation speed (rps)

Redundant Array of Independent Disks (RAID)
0 (non-redundant): data stored in
round-robin fashion, efficient for
accessing one block of data, no failure
tolerance.
1 (mirroring): multi-disk failure
tolerance, either copy can be used→
reduce seek time, 1 logical write = 2
physical writes.
2 (hamming code): not used, expensive,
redundant disks ≈ log2(# data disks),
efficient for parallel with small strip size,
universally controlled spindles.
3 (bit-interleaved parity): 1 disk for
parity, can recover from 1 disk failure
(p = blost ⊕ b2 ⊕ b3⇔ blost = b2 ⊕ b3 ⊕ p),
fast read/write, low ECC:Data ratio.
4 (block-level parity): not used, write
penalty = 2 reads + 2 writes, methods for
writing: (1) write data, recalculate parity,
write parity; (2) write data, compare old
data with new data, add difference to
parity;, individual spindle control, fast
read, slow write, low ECC:Data.
5 (block-level distributed parity): 1 disk
for parity, parity distributed across all
disks, can endure 1 disk failure,
common for Network Attached Storage,
fastest read/write, low ECC:Data
6 (dual redundancy): 2 disks for parity,
can endure 2 disk failures, use two
different parity methods, distributed
across all disks.
6 Input & Output
I/O Module: interface between processor
and memory via system bus or central
switch; interface to peripheral devices
through dedicated data links.
Model Requirements: (1) asynchronous
timing (2) command decoding (e.g. SEEK)
(3) data exchange (4) status reporting
(e.g. ready, busy, etc.) (5) address
recognition (6) data buffering (speed up
transactions) (7) error detection &
correction
I/O Register Mapping
Memory-mapped: registers mapped into
main memory address space; accessed as
if memory locations;
I/O-mapped: mapped into separate
address space; accessed via special
instructions.
I/O Techniques
Programmed I/O: Not using interrupts.
CPU waits for I/O device to complete
operation. CPU accesses device via
Control and Status Registers (CSR).
Wastes CPU time.
Interrupt-driven I/O:
(Memory↔ CPU↔ I/O) CPU executes
other instructions after sending I/O
command. I/O interrupts CPU when
complete. CPU sends acknowledgment

(INTA) to I/O. Interruptions handled
between instruction cycles.
Direct Memory Access (DMA):
(Memory↔ I/O) Use Input-Output
Processor (IOP). IOP steals cycles from
CPU. CPU sees elongated cycle and wait
until cycle is over. Interruptions
handled within one instruction cycle.
7 Instruction Sets
Arithmetic Operations: treat operands as
numbers; consider signs; (e.g. arithmetic
shift = multiplication/division by 2, sign
bit preserved).
Logical Operations: treat operands as bit
patterns; discard bits shifted out;
replenish new bits with 0.
Rotate Operations: put bits shifted out
back into the other end of the number;
are logical operations.
Instruction Operands
Op# Symbolic Interpretation
3 OP A, B, C A←B OP C

2 OP A, B A←A OP B

1 OP A AC←AC OP A

0 OP T←(T-1) OP T

Registers
General Purpose Registers: can be used
for whatever reason
Dedicated Purpose Registers: have a
specific purpose (e.g. PC, IR, SP,
processor status word - PSW, flag)
Data Types
Basic Data Types
Typical lengths: 8, 16, 32, 64 bits
Numeric: integer, floating point;
Non-numeric: character, binary data;
MIPS Architecture
(family of RISC, not ARM nor x86)
9 basic types: (1) (un)/signed bytes;
(2) (un)/signed half-words;
(3) (un)/signed words; (4) double-words;
(5) single-precision floating point (32
bits); (6) double-precision floating point
(64 bits);
ARM Architecture
Supported lengths: (1) byte (8 bits);
(2) half-word (16 bits); (3) word (32 bits);
Only unsigned integers, nonnegative
integers, and 2’s comp integers.
No floating point by hardware, must be
emulated.
Addressing Modes
Immediate (OP = A): operand is value;
Pros: no memory reference; Cons: small
operand magnitude
Direct (EA = A): operand is address;
Pros: fast & increased magnitude; Cons:
limited address space
Indirect (EA = (A)): operand is address
of address; Pros: large address space;
Cons: multiple memory references
Register (EA = R): operand points to
register; Pros: fast; Cons: limited # of

registers (e.g. 32 in MIPS)
Register Indirect (EA = (R)): operand
points to register, register has address;
Pros & Cons: same as indirect
Displacement (EA = A + (R)): address
is base address + offset; Pros: flexible;
Cons: complex; Usage: local vars, arrays;
Registers: PC, SP, base pointer register
Stack (EA = Top of Stack): implicit;
Pros: no memory references; Cons:
limited applicability; Usage: PUSH and
POP; Register: SP
Assembly Language
Syntax
[LABEL:] OP_NAME [OP_1, OP_2,

...] [# COMMENT]

Assembler Directives
.data data segment
.text program segment
.global NAME introduce to other files
.reserve EXPR reserve space with 0
.word VAL1[, ...] write to memory
OS Support
OS Services: (1) Program creation
(compilers), execution (loading,
managing resources), (2) I/O access
(provide uniform interface,
implementation hidden), (3) File system
management, (4) System access
(user/kernel mode), (5) Error detection
& response (BSOD), (6) Accounting
(collect usage stats)
System Calls: special entry points to
execute OS functions via kernel model
(executed by OS on behalf of user
program)
Scheduling & Time Sharing: CPU time
divided into time slices, each process
gets a slice, when used up, process is
suspended and another process is
scheduled. OS maintains a priority
queue, depends on waiting time, system
load, CPU-bound etc.
Processor Pipelining
Ideal throughput = 1 CPI.
Pipeline Hazards
Resource: multiple instructions need the
same resource (PC, ALU, registers).
Solution: add more resources
Data: instruction depends on result of
previous instruction – (1) RAW: occurs if
read happens before write when it
should be RAW; (2) WAR: opposite of
RAW, not occurs in pipeline but in
parallel systems; (3) WAW: occurs if 2nd
write happens before 1st, not in pipeline
but in parallel systems. Solutions:
(1) Stalling: wait; (2) Data forwarding:
use result of previous instruction;
(3) Rearrange instructions: separate
dependent instructions, not always
possible;
Control: branch not resolved.
Unsolvable. Mitigated by branch

prediction.
Branch Prediction
Static: always predict taken/not taken.
Pros: simple, 50% accuracy, higher in
for loops. Cons: possible high page
faults.
Dynamic: Use history to help predict.
(1) 1-bit: If wrong prediction, predict
opposite; Problem: high misprediction
rate at the end of loops; (2) 2-bit: If two
consecutive wrong predictions, predict
opposite.
RISC Architecture
Characteristics: (1) Load/store
architecture: only load/store
instructions access memory;
(2) Fixed-length, simple, fixed-format
instructions⇒ high clock rate, low clock
cycle time; (3) Fewer addressing modes
⇒ low CPI; (4) More instructions
(reduction in CPI is more significant
than increase in instruction count);
(5) Extensive soft/hardware pipelining;
(6) Relies on compiler optimisation.

